2024年山东省临沂市沂南县数学九上开学学业水平测试试题【含答案】
展开
这是一份2024年山东省临沂市沂南县数学九上开学学业水平测试试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)正方形面积为,则对角线的长为( )
A.6B.C.9D.
2、(4分)已知点A(-5,y1)、B(-2,y2)都在直线y=-x上,则y1与y2的关系是( )
A.B.C.D.
3、(4分)点A(-2,5)在反比例函数的图像上,则该函数图像位于( )
A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限
4、(4分)如图,在菱形ABCD中MN分别在AB、CD上且AM=CN,MN与AC交于点O,连接BO若∠DAC=62°,则∠OBC的度数为( )
A.28°B.52°C.62°D.72°
5、(4分)甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是( )
A.甲队率先到达终点B.甲队比乙队多走了200米路程
C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快
6、(4分)如图,在平面直角坐标系中,为,,与轴重合,反比例函数的图象经过中点与相交于点,点的横坐标为,则的长( )
A.B.C.D.
7、(4分)已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )
A.3B.4C.5D.6
8、(4分)如图:菱形ABCD的对角线AC,BD相交于点O,AC= ,BD=,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,PG⊥BC于点G,四边形QEDH与四边形PFBG关于点O中心对称,设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,,若S1=S2,则的值是( )
A.B.或C.D.不存在
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)
10、(4分)如果向量,那么四边形的形状可以是_______________(写出一种情况即可)
11、(4分)如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.
12、(4分)在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.
13、(4分)如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为了解学生“体育课外活动”的锻炼效果,在期末结束时,随机从学校1200名学生中抽取了部分学生的体育测试成绩绘制了条形统计图,请根据统计图提供的信息,回答下列问题.
(1)这次抽样调查共抽取了多少名学生的体育测试成绩进行统计?
(2)随机抽取的这部分学生中男生体育成绩的众数是多少?女生体育成绩的中位数是多少?
(3)若将不低于40分的成绩评为优秀,请估计这1200名学生中成绩为优秀的学生大约是多少?
15、(8分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为 1 个单位长度.
(1)画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1 的坐标;
(2)将△ABC 绕点 C 顺时针旋转 90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A 所经过的路径长
16、(8分)(问题背景)
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 .
(探索延伸)
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
(学以致用)
如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为 .
17、(10分)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.
求证:∠ANC=∠ABE.
应用:Q是线段BC的中点,若BC=6,则PQ= .
18、(10分)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)与最简二次根式是同类二次根式,则__________.
20、(4分)如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是_____________。
21、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
22、(4分)某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.
23、(4分)如图,两张等宽的纸条交叉叠放在一起,在重叠部分构成的四边形ABCD中,若AB=10,AC=12,则BD的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:AC是平行四边形ABCD的对角线,且BE⊥AC,DF⊥AC,连接DE、BF.求证:四边形BFDE是平行四边形.
25、(10分)如图,在四边形ABCD中,,,,,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转得到PQ,过A点,D点分别作BC的垂线,垂足分别为M,N.
求AM的值;
连接AC,若P是AB的中点,求PE的长;
若点Q落在AB或AD边所在直线上,请直接写出BP的长.
26、(12分)现在我们国家进入了高速发展的新时代,以为首的党中央在注重发展的同时,也提出了绿色中国的发展理念,请你以等腰三角形为基本图形利用平移或旋转设计一个宣传环保的图案,并加上简单的解说词.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.
【详解】
设对角线长是x.则有
x2=36,
解得:x=6.
故选B.
本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.
2、D
【解析】
根据一次函数图象上点的坐标特征可求出y1,y2的值,比较后即可解答.
【详解】
解:∵点A(-5,y1)、B(-2,y2)都在直线y=-x上,
∴y1=,y2=1.
∵>1,
∴y1>y2.
故选D.
本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1,y2的值是解题的关键.
3、D
【解析】
根据反比例函数上点的坐标特点可得k=-10,再根据反比例函数的性质可得函数图像位于第二、四象限.
【详解】
∵反比例函数的图像经过点(-2,5),
∴k=(-2)×5=-10,
∵-100时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份2024年山东省莱芜莱城区五校联考数学九上开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年宁夏吴忠市名校九上数学开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年那曲市数学九上开学学业水平测试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。