2024年山东省淄博市临淄区九年级数学第一学期开学教学质量检测试题【含答案】
展开
这是一份2024年山东省淄博市临淄区九年级数学第一学期开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将多项式加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是( )
A.B.C.D.
2、(4分)如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是( )
A.B.C.D.
3、(4分)如图,在中,,的垂直平分线交于点,交于点,连接,,,,添加一个条件,无法判定四边形为正方形的是( )
A.B.C.D.
4、(4分)下列各组数,可以作为直角三角形的三边长的是( )
A.2,3,4B.3,4,6C.4,5,6D.6,8,10
5、(4分)一组数据为:31 30 35 29 30,则这组数据的方差是( )
A.22B.18C.3.6D.4.4
6、(4分)如图,边长2的菱形ABCD中,,点M是AD边的中点,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为
A.B.C.D.
7、(4分)下列是假命题的是( )
A.平行四边形对边平行B.矩形的对角线相等
C.两组对边分别平行的四边形是平行四边形D.对角线相等的四边形是矩形
8、(4分)在平面直角坐标系中,已知点A(O,1),B(1,2),点P在轴上运动,当点P到A、B两点的距离之差的绝对值最大时,该点记为点P1,当点P到A、B两点的距离之和最小时,该点记为点P2,以P1P2为边长的正方形的面积为
A.1B.C.D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在实数范围内分解因式:x2﹣3=_____.
10、(4分)点A(-1,y1),B(2,y2)均在直线y=-2x+b的图象上,则y1___________y2(选填“>”<”=”)
11、(4分)把二次函数y= -2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是 _____________;
12、(4分)正方形网格中,∠AOB如图放置,则tan∠AOB=______________.
13、(4分)若反比例函数的图象经过点,则的图像在_______象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)
根据以上信息,解答下列问题:
(1)求两班的优秀率及两班数据的中位数;
(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.
15、(8分)关于x的方程(2m+1)x2+4mx+2m﹣3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;若不存在,说明理由.
16、(8分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:
(1)在图1中,作出∠DAE的角平分线;
(2)在图2中,作出∠AEC的角平分线.
17、(10分)如图,是矩形对角线的交点,,.
(1)求证:四边形是菱形;
(2)若,,求矩形的面积.
18、(10分)如图,两块大小不等的等腰直角三角形按图1放置,点为直角顶点,点在上,将绕点顺时针旋转角度,连接、.
(1)若,则当 时,四边形是平行四边形;
(2)图2,若于点,延长交于点,求证:是的中点;
(3)图3,若点是的中点,连接并延长交于点,求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果多边形的每个内角都等于,则它的边数为______.
20、(4分)如图,平行四边形ABCD的面积为32,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交BC,AD于点E、F,若AF=3DF,则图中阴影部分的面积等于_____
21、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
22、(4分)已知菱形ABCD的对角线AC=10,BD=24,则菱形ABCD的面积为__________。
23、(4分)若整数m满足,且,则m的值为___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1);
(2).
25、(10分) 先化简,再求值:(﹣x﹣1)÷,其中x=1.
26、(12分)解方程组
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
将分别与各个选项结合看看是否可以分解因式,即可得出答案.
【详解】
A.,此选项正确,不符合题意;
B.,此选项错误,符合题意;
C. ,此选项正确,不符合题意;
D. ,此选项正确,不符合题意.
故选B.
本题考查了因式分解,熟练掌握公式是解题的关键.
2、C
【解析】
把B点的横坐标减2,纵坐标加1即为点B´的坐标.
【详解】
解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,
∴点B´的坐标是(−3,2).
故选:C.
本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
3、D
【解析】
根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.
【详解】
解:∵EF垂直平分BC,
∴BE=EC,BF=CF,
∵BF=BE,
∴BE=EC=CF=BF,
∴四边形BECF是菱形;
当BC=AC时,
∵∠ACB=90°,
则∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,
∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.
故选项A正确,但不符合题意;
当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;
当BD=DF时,BC=EF,对角线相等的菱形是正方形,得菱形BECF是正方形,故选项C正确,但不符合题意;
当AC=BF时,AC=BF=CE,∠A=∠CEA=∠FBA,由菱形的对角线平分对角和直角三角形的两锐角互余得:∠ABC=30°,即∠FBE=60°,所以无法得出菱形BECF是正方形,故选项D错误,符合题意.
故选D.
本题考查菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的判定是解题关键.
4、D
【解析】
分别求出两小边的平方和和最长边的平方,看看是否相等即可.
【详解】
∵22+32≠42,
∴以2,3,4为边的三角形不是直角三角形,故本选项不符合题意;
B、∵32+42≠62,
∴以3,4,6为边的三角形不是直角三角形,故本选项不符合题意;
C、∵42+52≠62,
∴以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;
D、∵62+82=102,
∴以6,8,10为边的三角形是直角三角形,故本选项符合题意。
故选D.
本题考查了勾股定理的逆定理,能够熟记勾股定理的逆定理的内容是解此题的关键.
5、D
【解析】
根据方差的定义先计算出这组数的平均数然后再求解即可.
【详解】
解:这组数据的平均数为 =31,
所以这组数据的方差为×[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,
故选D.
方差和平均数的定义及计算公式是本题的考点,正确计算出这组数的平均数是解题的关键.
6、D
【解析】
过点M作于点F,根据在边长为2的菱形ABCD中,,M为AD中点,得到,从而得到,,进而利用锐角三角函数关系求出FM的长,利用勾股定理求得CM的长,即可得出EC的长.
【详解】
如图所示:过点M作于点F,
在边长为2的菱形ABCD中,,M为AD中点,
,,
,
,
,
,
∵AM=ME=1,
.
故选D.
此题主要考查了菱形的性质以及折叠的性质等知识,翻折变换折叠问题实质上就是轴对称变换,解题的关键是从题目中抽象出直角三角形,利用勾股定理计算求解.
7、D
【解析】
利用平行四边形的判定、矩形的性质及矩形的判定方法分别判断后即可确定正确的选项.
【详解】
解:A、平行四边形的两组对边分别平行,正确,是真命题;
B、矩形的对角线相等,正确,是真命题;
C、两组对边分别平行的四边形是平行四边形,正确,是真命题;
D、对角线相等的平行四边形是矩形,故错误,是假命题,
故选:D.
本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、矩形的性质及矩形的判定方法,难度不大.
8、C
【解析】
由三角形两边之差小于第三边可知,当A、B、P三点不共线时,|PA-PB|<AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A、B、P三点共线时,|PA-PB|=AB,即|PA-PB|≤AB,所以当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直线AB的解析式,再令y=0,求出x的值即可得到点P1的坐标;点A关于x轴的对称点为A',求得直线A'B的解析式,令y=0,即可得到点P2的坐标,进而得到以P1P2为边长的正方形的面积.
【详解】
由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.
设直线AB的解析式为y=kx+b,
∵A(0,1),B(1,2),
∴,解得,
∴y=x+1,
令y=0,则0=x+1,
解得x=-1.
∴点P1的坐标是(-1,0).
∵点A关于x轴的对称点A'的坐标为(0,-1),
设直线A'B的解析式为y=k'x+b',
∵A'(0,-1),B(1,2),
,解得,
∴y=3x−1,
令y=0,则0=3x−1,
解得x=,
∴点P2的坐标是(,0).
∴以P1P2为边长的正方形的面积为(+1)2=,
本题考查了最短距离问题,待定系数法求一次函数的解析式及x轴上点的坐标特征.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
把3写成的平方,然后再利用平方差公式进行分解因式.
【详解】
解:x2﹣3=x2﹣()2=(x+)(x﹣).
本题考查平方差公式分解因式,把3写成的平方是利用平方差公式的关键.
10、>.
【解析】
函数解析式y=-2x+b知k<0,可得y随x的增大而减小,即可求解.
【详解】
y=-2x+b中k<0,
∴y随x的增大而减小,
∵-1<2,
∴y1>y2,
故答案为>.
本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.
11、y= -2x2+12x-2
【解析】
先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.
【详解】
解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.
按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得
y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
故答案为:y=-2x2+12x-2.
本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.
12、1
【解析】
试题解析:如图,
tan∠AOB==1,
故答案为1.
13、二、四
【解析】
用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.
【详解】
解:将点代入得,解得:
因为k0时,图像在一、三象限,当k
相关试卷
这是一份山东省淄博市临淄区第二中学2023-2024学年九年级数学第一学期期末检测试题含答案,共7页。试卷主要包含了已知,则=,如果,那么下列各式中不成立的是,下列说法中,正确的个数,下列不是一元二次方程的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省淄博市临淄区召口乡中学九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了若,则的值是等内容,欢迎下载使用。
这是一份2023-2024学年山东省淄博市临淄区边河乡中学数学九年级第一学期期末质量检测试题含答案,共8页。试卷主要包含了如图,在菱形中,,,,则的值是等内容,欢迎下载使用。