终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年山东威海市14中学九上数学开学达标检测试题【含答案】

    立即下载
    加入资料篮
    2024年山东威海市14中学九上数学开学达标检测试题【含答案】第1页
    2024年山东威海市14中学九上数学开学达标检测试题【含答案】第2页
    2024年山东威海市14中学九上数学开学达标检测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东威海市14中学九上数学开学达标检测试题【含答案】

    展开

    这是一份2024年山东威海市14中学九上数学开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各式从左到右的变形为分解因式的是( )
    A.x(x﹣y)=x2﹣xyB.x2+2xy+1=x(x+2y)+1
    C.(y﹣1)(y+1)=y2﹣1D.x(x﹣3)+3(x﹣3)=(x+3)(x﹣3)
    2、(4分)将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形( )
    A.向左平移2个单位B.向右平移2个单位
    C.向上平移2个单位D.向下平移2个单位
    3、(4分)一次函数y=kx+b中,y 随x的增大而增大,b > 0,则这个函数的图像不经过 ( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)在“爱我汾阳”演讲赛中,小明和其他6名选手参加决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名同学成绩的( )
    A.平均数B.众数C.中位数D.方差
    5、(4分)如果,那么( )
    A.a≥﹣2B.﹣2≤a≤3
    C.a≥3D.a为一切实数
    6、(4分)在下列各式中,一定是二次根式的是( )
    A.B.C.D.
    7、(4分)如图,把两块全等的的直角三角板、重叠在一起,,中点为,斜边中点为,固定不动,然后把围绕下面哪个点旋转一定角度可以使得旋转后的三角形与原三角形正好合成一个矩形(三角板厚度不计)( )
    A.顶点B.顶点C.中点D.中点
    8、(4分)八年级(1)班“环保小组的5位同学在一次活动中捡废弃塑料袋的个数分别为:16,16,4,6,1.这组数据的中位数、众数分别为( )
    A.1,16B.4,16C.6,16D.10,16
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=30°,DE=1,则EF的长是_____.
    10、(4分)如图,在菱形OABC中,点B在x轴上,点A的坐标为,则点C的坐标为______.
    11、(4分)如图,在平行四边形中,的平分线交于点,.若,,则四边形的面积为________.
    12、(4分)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为______.
    13、(4分)在方程组中,已知,,则a的取值范围是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:
    求该市郊县所有人口的人均耕地面积.(精确到0.01公顷)
    15、(8分)如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t(s).
    (1)当t=3s时,连接AC与EF交于点G,如图①所示,则AG= cm;
    (2)当E、F分别在线段AD和AB上时,如图②所示,求证△CEF是等边三角形;
    (3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t的值和点F到BC的距离.
    16、(8分)如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.
    (1)求这两个函数的表达式;
    (2)求△AOB的面积S.
    17、(10分)如图,矩形ABCD的边BC在x轴上,点A(a,4)和D分别在反比函数y=-和y=(m>0)的图象上.

    (1)当AB=BC时,求m的值。
    (2)连结OA,OD.当OD平方∠AOC时,求△AOD的周长.
    18、(10分)无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:
    (1)水蜜桃进价为每箱多少元?
    (2)乙超市获利多少元?哪种销售方式更合算?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若,则=______.
    20、(4分)某种分子的半径大约是0.0000108mm,用科学记数法表示为______________.
    21、(4分)边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.
    22、(4分)已知方程的解满足x﹣y≥5,则k的取值范围为_____.
    23、(4分)关于x的一元二次方程x2+4x+2k﹣1=0有两个实数根,则k的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于F.
    (1)求证:△ABE≌△CDF;
    (2)若AB=6,BC=8,求DE的长.
    25、(10分)如图,在矩形中,、分别是、的中点,、分别是、的中点.
    求证:;
    四边形是什么样的特殊四边形?请说明理由.
    26、(12分)益群精品店以转件21元的价格购进一批商品,该商品可以白行定价,若每件商B品位价a元,可卖出(350-10a)件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,求每件商品应定价多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据因式分解的定义:将多项式和的形式化为整式积的形式,判断即可.
    【详解】
    解:A、没把一个多项式转化成几个整式积,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.
    此题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.
    2、A
    【解析】
    纵坐标不变则图形不会上下移动,横坐标减2,则说明图形向左移动2个单位.
    【详解】
    由于图形各顶点的横坐标都减去2,
    故图形只向左移动2个单位,
    故选A.
    本题考查了坐标与图形的变化---平移,要知道,上下移动,横坐标不变,左右移动,纵坐标不变.
    3、D
    【解析】
    先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.
    【详解】
    解:∵一次函数y=kx+b中,y随x的增大而增大,
    ∴k0.
    ∵b0,
    ∴此函数的图象经过第一、二、三象限,不经过第四象限.
    故选D.
    点睛:本题主要考查了一次函数图象与系数的关系,关键在于根据一次函数的增减性判断出k的正负.
    4、C
    【解析】
    7人成绩的中位数是第4名的成绩,参赛选手想要知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有7个人,且他们的分数互不相同,第4名的成绩是中位数,要判断是否进入前4名,故应知道中位数是多少,
    故选:C.
    考查了中位数的定义,中位数的实际应用,熟记中位数的定义是解题关键.
    5、C
    【解析】
    直接利用二次根式有意义的条件得出关于不等式组,解不等式组进而得到的取值范围.
    【详解】
    解:∵

    解得:
    故选:C
    本题考查了二次根式有意义的条件以及解不等式组等知识点,能根据已知条件得到关于的不等式组是解题的关键.
    6、C
    【解析】
    试题解析::A、是三次根式;故本选项错误;
    B、被开方数-10<0,不是二次根式;故本选项错误;
    C、被开方数a2+1≥0,符合二次根式的定义;故本选项正确;
    D、被开方数a<0时,不是二次根式;故本选项错误;
    故选C.
    点睛:式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.
    7、D
    【解析】
    运用旋转的知识逐项排除,即可完成解答.
    【详解】
    A,绕顶点A旋转可以得到等腰三角形,故A错误;
    B,绕顶点B旋转得不到矩形,故B错误;
    C,绕中点P旋转可以得到等腰三角形,故C错误;
    D,绕中点Q旋转可以得到等腰三角形,故D正确;
    因此答案为D.
    本题主要考查了旋转,解题的关键在于具有丰富的空间想象能力.
    8、A
    【解析】
    根据中位数和众数的定义求解
    【详解】
    解:这组数据的中位数为:1 ,
    众数为:16 .
    故选:A
    此题考查中位数和众数的定义,解题关键在于掌握其定义
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE=EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.
    【详解】
    解:如图:连接BE
    ∵AB的垂直平分线DE交BC的延长线于F,
    ∴AE=BE,∠A+∠AED=90°,
    ∵在Rt△ABC中,∠ACB=90°,
    ∴∠F+∠CEF=90°,
    ∵∠AED=∠FEC,
    ∴∠A=∠F=30°,
    ∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,
    ∴∠CBE=∠ABC﹣∠ABE=30°,
    ∴∠CBE=∠F,
    ∴BE=EF,
    在Rt△BED中,BE=1DE=1×1=1,
    ∴EF=1.
    故答案为:1.
    本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.
    10、
    【解析】
    根据轴对称图形的性质即可解决问题.
    【详解】
    四边形OABC是菱形,
    、C关于直线OB对称,


    故答案为.
    本题考查菱形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握菱形的性质,利用菱形是轴对称图形解决问题.
    11、1
    【解析】
    首先证明四边形ABEF是菱形,然后求出AE即可解决问题.
    【详解】
    解:连接AE,交BF于点O.
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,即AF∥BE,
    ∵EF∥AB,
    ∴四边形ABEF是平行四边形,
    ∵AF∥BE,
    ∴∠AFB=∠FBE,
    ∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∴∠ABF=∠AFB,
    ∴AB=AF,
    ∴平行四边形ABEF是菱形,连接AE交BF于O,
    ∴AE⊥BF,OB=OF=3,OA=OE,
    在Rt△AOB中,OA==4,
    ∴AE=2OA=8,
    ∴S菱形ABEF=•AE•BF=1.
    故答案为1.
    本题考查菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质和判定进行推理是解此题的关键,难度适中.
    12、4
    【解析】
    如图所示:
    ∵四边形ABCD是平行四边形



    即两条对角线互相垂直,
    ∴这个四边形是菱形,

    故答案为
    13、
    【解析】
    先根据加减消元法解二元一次方程组,解得,再根据,,可列不等式组,解不等式组即可求解.
    【详解】
    方程组,
    由①+②,可得:
    ,
    解得,
    把代入①可得:,
    因为,,
    所以,
    所以不等式组的解集是,
    故答案为:.
    本题主要考查解含参数的二元一次方程组和一元一次不等式组,解决本题的关键是要熟练掌握解含参数的二元一次方程的解法.
    三、解答题(本大题共5个小题,共48分)
    14、该市郊县所有人口的人均耕地面积是0.17公顷.
    【解析】
    根据图表中的数据计算出总的耕地面积以及总人数,作除法运算即可得出答案.
    【详解】
    解:(公顷)
    答:该市郊县所有人口的人均耕地面积是0.17公顷.
    本题考查的知识点是加权平均数,从图表中得出相关的信息是解此题的关键.
    15、(1);(2)详见解析;(3).
    【解析】
    (1)想办法证明CE=CF,AE=AF,推出AC垂直平分线段EF,即可解决问题;
    (2)如图②中,连接AC.只要证明△DCE≌△ACF即可解决问题;
    (3)如图③中,连接AC,作CH⊥AB于H,FM⊥BC交CB的延长线于M.解直角三角形求出AF,FM即可解决问题.
    【详解】
    (1)解:如图①中,
    ∵四边形ABCD是菱形,∠ADC=60°,
    ∴DA=DC=AB=BC,
    ∴△ADC,△ABC第三等边三角形,
    当t=3时,AE=DE=3cm,AF=BF=3cm,
    ∵CA=CD=CB,
    ∴CE⊥AD,CF⊥AB,
    ∵∠CAB=∠CAD,
    ∴CF=CE,∵AE=AF,
    ∴AC垂直平分线段EF,
    ∴∠AGF=90°,
    ∵∠FAG=60°,
    ∴∠AFG=30°,
    ∴AG=AF=cm,
    (2)如图②中,连接AC.
    ∵四边形ABCD是菱形,∠ADC=60°,
    ∴DA=DC=AB=BC,
    ∴△ADC,△ABC第三等边三角形,
    ∴∠D=∠ACD=∠CAF=60°,DA=AC,
    ∵DE=AF,
    ∴△DCE≌△ACF,
    ∴CE=CF,∠DCE=∠ACF,
    ∴∠ECF=∠ACD=60°,
    ∴△ECF是等边三角形.
    (3)如图③中,连接AC,作CH⊥AB于H,FM⊥BC交CB的延长线于M.
    由(2)可知:△ECF是等边三角形,
    ∴CF=CE=3,
    在Rt△BCH中,∵BC=6,∠CBH=60°,
    ∴BH=3,CH=3,
    在Rt△CFH中,HF=,
    ∴BF=3﹣3,AF=3+3,
    ∴t=(3+3)s,
    在Rt△BFM中,∵∠FBM=∠ABC=60°,BF=3﹣3,
    ∴FM=BF•sin60°=.
    本题考查四边形综合题、菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    16、(1)OA:,AB:;(2)
    【解析】
    (1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;
    (2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.
    【详解】
    (1)设直线OA的解析式为y=kx,
    把A(3,4)代入得4=3k,解得k=,
    所以直线OA的解析式为y=x;
    ∵A点坐标为(3,4),
    ∴OA==5,
    ∴OB=OA=5,
    ∴B点坐标为(0,-5),
    设直线AB的解析式为y=ax+b,
    把A(3,4)、B(0,-5)代入得
    ,解得,
    ∴直线AB的解析式为y=3x-5;
    (2)∵A(3,4),
    ∴A点到y轴的距离为3,且OB=5,
    ∴S=×5×3=.
    本题主要考查一次函数的交点问题,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.
    17、(1)4 (4)10+4
    【解析】
    (1)把A点坐标代入反比例函数式,求出a值,则A的横坐标可知,由条件知AB=BC,求出OC的长度,则求出D点的坐标,把D点坐标代入,则可求出m的值.
    (4)现知A点坐标,则可求出OA的长度,根据角平分线的定义和两直线平行内错角相等,等量代换得出 ∠ADO=∠AOD ,所以AO=AD=3,则OC的长度可求,现知DC的长度,用勾股定理即可求出OD的长度,则△AOD的周长可求.
    【详解】
    (1)当y=4时,a==-1,
    ∴OB=1.
    ∵矩形ABCD,且AB=BC,
    ∴AB=BC=CD=4,
    ∴OC=1,
    ∴D(1,4),
    ∴m=4.
    (4)∵ ∠ABO=90°,A(-1,4),
    ∴OA=3.
    ∵OD平分∠AOC,
    ∴∠AOD=∠DOC.
    ∵AD∥BC,
    ∴∠ADO=∠DOC,
    ∴∠ADO=∠AOD,
    ∴DA=OA=3,
    ∴OC=4.
    ∵∠OCD=90°,
    ∴OD,
    ∴△AOD的周长是10+4.
    本题考查了反比例函数与四边形的综合,灵活应用矩形的性质及等角对等边这一性质求线段长是解题的关键.
    18、 (1)水蜜桃进价为每箱100元; (2)乙超市获利为33000元,甲种销售方式获利多.
    【解析】
    (1)设水蜜桃进价为每箱x元,根据利润=(售价-进价)×箱数,利用甲超市获利42000元列分式方程即可求出x的值,检验即可得答案;(2)根据进价可得甲超市的售价,即可求出乙超市的售价,根据进价和总价可求出购进箱数,即可求出乙超市的利润,与42000元比较即可得答案.
    【详解】
    设水蜜桃进价为每箱x元,
    ∴,
    解得:x=100,
    经检验x=100是分式方程的解,且符合题意,
    则水蜜桃进价为每箱100元;
    (2)∵挑出优质大个的水蜜桃以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.
    ∴甲超市水蜜桃的售价是200元/箱和110元/箱,
    ∴乙超市售价为,
    ∵甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,
    ∴乙超市购进水蜜桃:60000÷100=600(箱)
    ∴乙超市获利为600×(155-100)=33000(元),
    ∵42000元>33000元,
    ∴甲种销售方式获利多.
    本题考查分式方程的应用,根据题意找出等量关系列出方程是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
    【详解】




    故答案为1.
    本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
    20、1.08×10-5
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.0000108=1.08×10-5.
    故答案为1.08×10-5.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    21、5
    【解析】
    由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S =S,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.
    【详解】
    ∵四边形ABCD为正方形,
    ∴∠D=∠ABC=90°,AD=AB,
    ∴∠ABE=∠D=90°,
    ∵∠EAF=90°,
    ∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
    ∴∠DAF=∠BAE,
    ∴△AEB≌△AFD(ASA),
    ∴S =S ,
    ∴它们都加上四边形ABCF的面积,
    可得到四边形AECF的面积=正方形的面积=5.
    故答案为:5.
    此题考查全等三角形的判定与性质,正方形的性质,解题关键在于掌握判定定理.
    22、k≥1
    【解析】
    两方程相减可得x﹣y=4k﹣3,根据x﹣y≥5得出关于k的不等式,解不等式即可解答.
    【详解】
    两方程相减可得x﹣y=4k﹣3,
    ∵x﹣y≥5,
    ∴4k﹣3≥5,
    解得:k≥1,
    故答案为:k≥1.
    本题考查一元一次不等式的应用,根据题意列出关于k的不等式是解题的关键.
    23、k≤
    【解析】
    根据方程有两个实数根可以得到根的判别式,进而求出的取值范围.
    【详解】
    解:由题意可知:
    解得:
    故答案为:
    本题考查了根的判别式的逆用---从方程根的情况确定方程中待定系数的取值范围,属中档题型,解题时需注意认真理解题意.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析(2)2
    【解析】
    (1)首先由平行四边形的性质可得AD∥BC,AB=CD;∠A=∠C,再由条件利用SAS定理可判定△ABE≌△CDF;(2)由(1)可知 ∠EBF=∠AEB由平行线的性质和角平分线得出∠AEB=∠ABE,即可得出结果.
    解:(1)证明:法一:
    ∵四边形ABCD是平行四边形
    ∴AD∥BC,AD=BC,∠A=∠C,,
    ∵BE∥DF,
    ∴四边形BEDF是平行四边形,
    ∴DE=BF,
    ∴AD-DE=BC-BF,
    即:AE=CF,
    ∴△ABE≌△CDF(SAS).
    法二:∵BE//FD ∴∠EBF=∠DFC
    ∵AD//BC ∴∠EBF=∠AEB
    ∴∠AEB=∠DFC
    在▱ABCD中,∵∠A=∠C,AB=CD
    ∴ △ABE≌△CDF
    (2)由(1)可知 ∠EBF=∠AEB
    又∵BE平分∠EBF
    ∴∠EBF=∠ABE
    ∴∠AEB=∠ABE
    ∴AE=AB=6
    又∵BC=AD=8
    ∴DE=2
    “点睛”本题考查了平行四边形的判定与性质、等腰三角形的判定;熟记平行四边形的性质,证出AE=AB是解决(2)的关键.
    25、(1)证明见解析(2)菱形
    【解析】
    (1)连接MN,证明四边形AMNB是矩形,得出∠MNB=90°,根据直角三角形斜边上的中线性质即可得出结论;
    (2)先证明四边形MPNQ是平行四边形,再由(1)即可得出结论.
    【详解】
    证明:连接,如图所示:
    ∵四边形是矩形,
    ∴,,,
    ∵、分别是、的中点,
    ∴,,
    ∴,
    ∴四边形是平行四边形,
    ∴平行四边形是矩形,
    ∴,
    ∵是的中点,
    ∴;四边形是菱形;理由如下:
    解:∵,,
    ∴四边形是平行四边形,
    ∴,,
    又∵、分别是、的中点,
    ∴,
    ∴四边形是平行四边形,
    由得,
    ∴四边形时菱形.
    本题考查了菱形与矩形的性质,解题的关键是熟练的掌握菱形的判定与矩形的性质.
    26、需要进货100件,每件商品应定价25元
    【解析】
    根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价-每件进价.建立等量关系.
    【详解】
    解:依题意(a-21)(350-10a)=400,
    整理得:a2-56a+775=0,
    解得a1=25,a2=1.
    ∵21×(1+20%)=25.2,
    ∴a2=1不合题意,舍去.
    ∴350-10a=350-10×25=100(件).
    答:需要进货100件,每件商品应定价25元.
    本题考查了一元二次方程的应用,注意需要检验结果是否符合题意.
    题号





    总分
    得分
    郊县
    人数(万人)
    人均耕地面积(公顷)
    20
    0.15
    5
    0.20
    10
    0.18

    相关试卷

    2024年山东省日照于里中学九上数学开学达标检测模拟试题【含答案】:

    这是一份2024年山东省日照于里中学九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省济南市礼乐初级中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024年山东省济南市礼乐初级中学数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东菏泽市曹县数学九上开学达标检测模拟试题【含答案】:

    这是一份2024年山东菏泽市曹县数学九上开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map