2024年山西省太原五十三中学九年级数学第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则化简的结果是( )
A.B.C.﹣3D.3
2、(4分)因式分解x2﹣9y2的正确结果是( )
A.(x+9y)(x﹣9y)
B.(x+3y)(x﹣3y)
C.(x﹣3y)2
D.(x﹣9y)2
3、(4分)因式分解的正确结果是( )
A.B.C.D.
4、(4分)用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
5、(4分)下列计算正确的是( )
A.=﹣4B.()2=4C. +=D.÷=3
6、(4分)下表记录了四名运动员参加男子跳高选拔赛成绩的平均数与方差:
如果选一名运动员参加比赛,应选择( )
A.甲B.乙C.丙D.丁
7、(4分)下列函数的图象经过,且随的增大而减小的是( )
A.B.C.D.
8、(4分)下列各式中,正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若点在一次函数的图像上,则代数式的值________。
10、(4分)如图,在平行四边形ABCD中,,,,则平行四边形ABCD的面积为___________.
11、(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为______ .
12、(4分)一个正数的平方根分别是x+1和x﹣3,则这个正数是____________
13、(4分)如图,在正方形ABCD中,AB=8,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,在直角坐标系 xOy 中,一次函数=x+b(≠0)的图象与反比例函数 的图象交于A(1,4),B(2,m)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求△AOB 的面积;
(3)当 x 的取值范围是 时,x+b>(直接将结果填在横线上)
15、(8分)解方程:=+1.
16、(8分)已知△ABC的三边长a、b、c满足|a-4|+(2b- 12)2+ =0,试判断△ABC的形状,并说明理由.
17、(10分)如图,已知平行四边形ABCD的周长是32 cm,,,,E,F是垂足,且
(1)求的度数;
(2)求BE,DF的长.
18、(10分)如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=S矩形OBCD,问:
(1)当点P在矩形的对角线OC上,求点P的坐标;
(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形中,,,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴的正半轴于,则点的表示的数为_____.
20、(4分)一次函数的图象不经过第_______象限.
21、(4分)一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.
22、(4分)如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.
23、(4分)已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
25、(10分)先化简,再求值:(a+)÷,其中a=1.
26、(12分)在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:
“宇番2号”番茄挂果数量统计表
请结合图表中的信息解答下列问题:
(1)统计表中,a= ,b= ;
(2)将频数分布直方图补充完整;
(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为 °;
(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有 株.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先把变形为+,根据a的取值范围可确定1-a和a-4的符号,然后根据二次根式的性质即可得答案.
【详解】
=+
∵2∴1-a<0,a-4<0,
∴+=-(1-a)-(a-4)=-1+a-a+4=3,
故选D.
本题考查了二次根式的化简,当a≥0时,=a;当a<0时,=-a;熟练掌握二次根式的性质是解题关键.
2、B
【解析】
原式利用平方差公式分解即可
【详解】
解:x2-9y2=(x+3y)(x-3y),
故选:B.
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
3、C
【解析】
首先提取公因式a,再利用平方差公式进行二次分解即可.
【详解】
=a(a-1)=,
故选:C.
此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
4、B
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
故选B.
考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
5、D
【解析】
根据二次根式的性质对A、B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的除法法则对D进行判断.
【详解】
A、原式=|﹣4|=4,所以A选项错误;
B、原式=2,所以B选项错误;
C、与不能合并,所以C选项错误;
D、原式==3,所以D选项正确.
故选D.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
6、B
【解析】
【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.
【详解】∵=3.5,=3.5,=12.5,=15,
∴=<<,
∵=173,=175,=175,=174,
∴=>>,
∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择乙,
故选B.
【点睛】本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
7、D
【解析】
根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.再把点代入,符合的函数解析式即为答案.
【详解】
A. ,当x=0时,y=0,图象不经过,不符合题意;
B. ,,当x=0时,y=-1,图象不经过,不符合题意;
C. ,k=2>0,随的增大而增大,不符合题意;
D. y=-x+1,当x=0时,y=1,图象经过,k=-1<0,随的增大而减小
本题考查了一次函数图像的性质,判断函数图像是否经过点,把点的x坐标代入求y坐标,如果y值相等则函数图像经过点,如不相等则不经过,当k>, y随的增大而增大,,当k<0,随的增大而减小.
8、D
【解析】
先想一下分式的基本性质的内容,根据分式的基本性质逐个判断即可.
【详解】
解:(A)原式=,故A错误;
(B)原式=,故B错误;
(C)原式=,故C错误;
故选:D.
本题考查了分式的基本性质的应用,主要考查学生对分式的基本性质的理解能力和判断能力,题目比较典型,比较容易出错.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10
【解析】
先把点带入一次函数求出的值,再代入代数式进行计算即可.
【详解】
∵点在一次函数上,
∴,即,
∴原式===10.
此题主要考查了一次函数图像上点的坐标特点以及代数式求值的问题,关键是掌握凡是函数图象经过的点必能满足解析式,并且熟练进行有理数的混合计算.
10、
【解析】
在Rt△ACB中,,,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.
【详解】
∵,
∴∠ACB=90°,
在Rt△ACB中,,,
由勾股定理可得,AC=8,
∴平行四边形ABCD的面积为:BC×AC=6×8=48.
故答案为:48.
本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.
11、105°
【解析】
由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.
【详解】
∵AD∥BC,
∴∠ADB=∠DBG,
由折叠可得∠ADB=∠BDG,
∴∠DBG=∠BDG,
又∵∠1=∠BDG+∠DBG=50°,
∴∠ADB=∠BDG=25°,
又∵∠2=50°,
∴△ABD中,∠A=105°,
∴∠A′=∠A=105°,
故答案为:105°.
本题主要考查了翻折变换(折叠问题),平行四边形的性质,熟练掌握折叠性质和平行四边形额性质是解答本题的关键.
12、1
【解析】
根据正数的两个平方根互为相反数列出关于x的方程,解之可得.
【详解】
根据题意知x+1+x-3=0,
解得:x=1,
∴x+1=2
∴这个正数是22=1
故答案为:1.
本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.
13、4
【解析】
连接DE,交AC于点P,连接BD,由正方形的性质及对称的性质可得DE即为所求,然后运用勾股定理在RT△CDE中求解即可.
【详解】
解:连接DE,交AC于点P,连接BD.
∵点B与点D关于AC对称,
∴DE的长即为PE+PB的最小值,
∵AB=8,E是BC的中点,
∴CE=4,
在Rt△CDE中,
DE=.
故答案为.
正方形的性质、对称的性质及勾股定理是本题的考点,根据题意作出辅助线并确定DE即为所求是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),;(1)3;(3)x<0或
【解析】
(1)把(1,4)代入y=,易求k1,从而可求反比例函数解析式,再把B点坐标代入反比例函数解析式,易求m,然后把A、B两点坐标代入一次函数解析式,易得关于k1、b的二元一次方程,解可求k1、b,从而可求一次函数解析式;
(1)设直线AB与x轴交于点C,再根据一次函数解析式,可求C点坐标,再根据分割法可求△AOB的面积;
(3)观察可知当x<0或1<x<3时,k1x+b>.
【详解】
解:(1)把(1,4)代入y=,得
k1=4,
∴反比例函数的解析式是y=,
当x=1时,y=,
∴m=1,
把(1,4)、(1,1)代入y1=k1x+b中,得
,
解得,
∴一次函数的解析式是y=-1x+6;
(1)设直线AB与x轴交于点C,
当y=0时,x=3,
故C点坐标是(3,0),
∴S△AOB=S△AOC-S△BOC=×3×4-×3×1=6-3=3;
(3)在第一象限,当1<x<1时,k1x+b>;
还可观察可知,当x<0时,k1x+b>.
∴x<0或1<x<1.
本题考查了待定系数法求函数解析式、一次函数与反比例函数的交点问题,解题的关键是先求出反比例函数,进而求B点坐标,然后求出一次函数的解析式.
15、.
【解析】
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
详解:,
,
.
经检验:是原方程的解,
所以原方程的解是.
点睛:此题考查了解分式方程,熟练掌握运算法则是解本题的关键.
16、△ABC为直角三角形,理由见解析.
【解析】
根据绝对值、平方、二次根式的非负性即可列出式子求出a,b,c的值,再根据勾股定理即可判断.
【详解】
△ABC为直角三角形,理由,
由题意得a-4=0.2b-12=0,10-c=0 ,
所以a=8、b=6,c=10.
所以a2 +b2=c2 , △ABC为直角三角形.
此题主要考查勾股定理的应用,解题的关键是根据非负性求出各边的长.
17、(1)∠C=60°;(2)BE=5cm,DF=3cm.
【解析】
(1)结合已知条件,由四边形的内角和为360°即可解答;(2)根据平行四边形的性质结合已知条件求得AB=10cm,BC=6cm.再根据30°角直角三角形的性质即可求解.
【详解】
(1)∵AE⊥BC,AF⊥CD,
∴∠AFD=∠AEB=90°,
∴∠EAF+∠C=360°﹣90°﹣90°=180°.
又∵∠EAF=2∠C,
∴∠C=60°.
(2)∵▱ABCD的周长是32cm,,
∴AB=10cm,BC=6cm.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABE=∠C=60°,
在Rt△ABE中,BE=AB,
∵AB=10 cm,
∴BE=5 cm,
同理DF=3 cm.
∴BE=5cm,DF=3cm.
本题考查了平行四边形的性质及30°角直角三角形的性质,熟练运用有关性质是解决问题的关键.
18、(1)P(,2);(2)(,2)或(﹣,2)
【解析】
(1)根据已知条件得到C(5,3),设直线OC的解析式为y=kx,求得直线OC的解析式为y=x,设P(m,m),根据S△POB=S矩形OBCD,列方程即可得到结论;
(2)设点P的纵坐标为h,得到点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,于是得到结论.
【详解】
(1)如图:
∵矩形OBCD中,OB=5,OD=3,
∴C(5,3),
设直线OC的解析式为y=kx,
∴3=5k,
∴k=,
∴直线OC的解析式为y=x,
∵点P在矩形的对角线OC上,
∴设P(m,m),
∵S△POB=S矩形OBCD,
∴5×m=3×5,
∴m=,
∴P(,2);
(2)∵S△POB=S矩形OBCD,
∴设点P的纵坐标为h,
∴h×5=5,
∴h=2,
∴点P在直线y=2或y=﹣2上,
作B关于直线y=2的对称点E,
则点E的坐标为(5,4),
连接OE交直线y=2于P,则此时PO+PB的值最小,
设直线OE的解析式为y=nx,
∴4=5n,
∴n=,
∴直线OE的解析式为y=x,
当y=2时,x=,
∴P(,2),
同理,点P在直线y=﹣2上,
P(,﹣2),
∴点P的坐标为(,2)或(﹣,2).
本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P在位置是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先根据勾股定理计算出的长,进而得到的长,再根据点表示,可得点表示的数.
【详解】
解:由勾股定理得:,
则,
点表示,
点表示,
故答案为:.
此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.
20、三
【解析】
根据一次函数的性质,k<0,过二、四象限,b>0,与y轴交于正半轴,综合来看即可得到结论.
【详解】
因为解析式中,-5<0,3>0,图象过一、二、四象限,故图象不经过第三象限.
故答案为:第三象限.
21、1
【解析】
根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.
【详解】
∵这组数据的中位数和平均数相等,
∴(4+5)÷2=(2+4+5+x)÷4,
解得:x=1.
故答案为:1.
此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.
22、
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=3x+b.
把(0,1)代入直线解析式得1=b,
解得 b=1.
所以平移后直线的解析式为y=3x+1.
故答案为:y=3x+1.
本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
23、﹣1<m<1
【解析】
试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.
解:∵点P(m﹣1,m+1)在第二象限,
∴m﹣1<0,m+1>0,
解得:﹣1<m<1.故填:﹣1<m<1.
【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)2.
【解析】
分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.
(2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.
详解:(1)证明:∵∥,
∴
∵平分
∴,
∴
∴
又∵
∴
又∵∥,
∴四边形是平行四边形
又∵
∴是菱形
(2)解:∵四边形是菱形,对角线、交于点.
∴.,,
∴.
在中,.
∴.
∵,
∴.
在中,.为中点.
∴.
点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.
25、2.
【解析】
分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.
详解:(a+)÷
=[+]•
=•
=•
=,
当a=1时,原式==2.
点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.
26、(1)15,0.3;(2)图形见解析;(3)72;(4)300.
【解析】
试题分析:(1)a=60-6-12-18-9=15,b=1-0.1-0.2-0.25-0.15=0.3;(2)根据(1)中a值可以补充完整;(3)利用360°×挂果数量在“35≤x<45”的频率可以得到对应扇形的圆心角度数;(4)用1000×挂果数量在“55≤x<65”的频率可以得出株数.
试题解析:(1)a=15,b=0.3;(2)
(3)72;(4)300.
考点:1统计图;2频数与频率;3样本估计总体.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
平均数
173
175
175
174
方差
3.5
3.5
12.5
15
挂果数量x(个)
频数(株)
频率
25≤x<35
6
0.1
35≤x<45
12
0.2
45≤x<55
a
0.25
55≤x<65
18
b
65≤x<75
9
0.15
2024年山西省农业大附属中学九年级数学第一学期开学监测模拟试题【含答案】: 这是一份2024年山西省农业大附属中学九年级数学第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山西省太原五十三中学2023-2024学年九年级数学第一学期期末考试试题含答案: 这是一份山西省太原五十三中学2023-2024学年九年级数学第一学期期末考试试题含答案,共8页。试卷主要包含了 “泱泱华夏,浩浩千秋,下列函数属于二次函数的是,某篮球队14名队员的年龄如表等内容,欢迎下载使用。
山西省太原市第五十三中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案: 这是一份山西省太原市第五十三中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,是的直径,是弦,点是劣弧,抛物线的对称轴是等内容,欢迎下载使用。