2024年陕西省西安市(师大附中)九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
则这50名学生这一周在校的平均体育锻炼时间是
A.小时B.小时C.小时D.7小时
2、(4分)要使分式有意义,x 的值不能等于( )
A.-1B.0C.1D.±1
3、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B作于点G,延长BG交AD于点H.在下列结论中:①;②;③ . 其中不正确的结论有( )
A.0个B.1个C.2个D.3个
4、(4分)图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )
A.y=4n﹣4B.y=4nC.y=4n+4D.y=n2
5、(4分)下列四组线段中,可以构成直角三角形的是( )
A.3,4,5B.C.4,5,6D.1,1,2
6、(4分)计算的结果是( )
A.B.2C.1D.-5
7、(4分)已知二次根式与是同类二次根式,则a的值可以是( )
A.5B.6C.7D.8
8、(4分)在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为( )
A.﹣3B.﹣5C.7D.﹣3或﹣5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知是整数,则正整数n的最小值为___
10、(4分)如图,平行四边形ABCD中,∠A的平分线AE交CD于E,连接BE,点F、G分别是BE、BC的中点,若AB=6,BC=4,则FG的长_________________.
11、(4分)已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=6,CD=4,则EF=______.
12、(4分)如图,函数y=kx+b(k≠0)的图象经过点(1,2),则不等式kx+b>2的解集为______.
13、(4分)从1、2、3、4这四个数中一次随机地取两个数,则其中一个数是另一个数两倍的概率是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,AD=CB,AB=CD,求证:△ACB≌△CAD
15、(8分)计算:()﹣().
16、(8分)如图,△ABC是等边三角形.
(1)利用直尺和圆规按要求完成作图(保留作图痕迹);
①作线段AC的中点M.
②连接BM,并延长到D,使MD=MB,连接AD,CD.
(2)求证(1)中所作的四边形ABCD是菱形.
17、(10分)A、B两店分另选5名销售员某月的销售额(单位:万元)进行分析,数据如下图表(不完整):
(1)根据图a数据填充表格b所缺的数据;
(2)如果A店想让一半以上的销售员达到销售目标,你认为月销售额定为多少合适?说明理由.
18、(10分)甲、乙两台包装机同时包装的糖果,从中各抽出袋,测得实际质量(g)如下:甲: ;乙: .
(1)分别计算两组数据的平均数(结果四舍五入保留整数)和方差;
(2)哪台包装机包装糖果的质量比较稳定(方差公式:)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是____.
20、(4分)正方形的边长为,则这个正方形的对角线长为_________.
21、(4分)观察下面的变形规律:
=-1,=-,=-,=-,…
解答下面的问题:
(1) 若为正整数,请你猜想=________;
(2) 计算:
22、(4分)已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.
23、(4分)如果一组数据3,4,,6,7的平均数为5,则这组数据的中位数和方差分别是__和__.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形ABCD中,点M、N是BC、CD边上的点,连接AM、BN,若BM=CN
(1)求证:AM⊥BN
(2)将线段AM绕M顺时针旋转90°得到线段ME,连接NE,试说明:四边形BMEN是平行四边形;
(3)将△ABM绕A逆时针旋转90°得到△ADF,连接EF,当时,请求出 的值
25、(10分)已知函数的图象经过第四象限的点B(3,a),且与x轴相交于原点和点A(7,0)
(1)求k、b的值;
(2)当x为何值时,y>﹣2;
(3)点C是坐标轴上的点,如果△ABC恰好是以AB为腰的等腰三角形,直接写出满足条件的点C的坐标
26、(12分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.
(1)求证:△AEB≌△CFD;
(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:
小时.
故这50名学生这一周在校的平均体育锻炼时间是6.6小时.
故选C.
本题考查加权平均数,解题的关键是熟练掌握加权平均数的计算公式.
2、C
【解析】
根据分式有意义的条件:分母不等于0;
【详解】
解:要使分式有意义,则 ,故
故选:C
考查分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0;是解题的关键.
3、B
【解析】
先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.
【详解】
∵BD是正方形ABCD的对角线,
∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
∵BE=BC,
∴AB=BE,
∵BG⊥AE,
∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,
在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
∵∠AGH=90°,
∴∠DAE=∠ABH=22.5°,
在△ADE和△CDE中
,
∴△ADE≌△CDE,
∴∠DAE=∠DCE=22.5°,
∴∠ABH=∠DCF,
在Rt△ABH和Rt△DCF中
,
∴Rt△ABH≌Rt△DCF,
∴AH=DF,∠CFD=∠AHB=67.5°,
∵∠CFD=∠EAF+∠AEF,
∴67.5°=22.5°+∠AEF,
∴∠AEF=45°,故①②正确;
如图,连接HE,
∵BH是AE垂直平分线,
∴AG=EG,
∴S△AGH=S△HEG,
∵AH=HE,
∴∠AHG=∠EHG=67.5°,
∴∠DHE=45°,
∵∠ADE=45°,
∴∠DEH=90°,∠DHE=∠HDE=45°,
∴EH=ED,
∴△DEH是等腰直角三角形,
∵EF不垂直DH,
∴FH≠FD,
∴S△EFH≠S△EFD,
∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
故选B.
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.
4、B
【解析】
试题解析:由题图可知:
n=1时,圆点有4个,即y=4×1=4;
n=2时,圆点有8个,即y=4×2=8;
n=3时,圆点有12个,即y=4×3=12;
……
∴y=4n.
故选B.
5、A
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A. 3+4=5,能构成直角三角形,故符合题意;
B. 1+()≠3,不能构成直角三角形,故不符合题意;
C. 4+5≠6,不能构成直角三角形,故不符合题意;
D. 1+1≠2,不能构成直角三角形,故不符合题意。
故选:A.
此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算.
6、A
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
解:原式=
故选:A.
本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
7、B
【解析】
本题考查同类二次根式的概念.
点拨:化成后的被开方数相同,这样的二次根式叫做同类二次根式.
解答:当时,与不是同类二次根式.
当时,,与是同类二次根式.
当时,,与不是同类二次根式.
当时,,与不是同类二次根式.
8、A
【解析】
分三种情形讨论求解即可解决问题;
【详解】
解:对于函数y=|x﹣a|,最小值为a+1.
情形1:a+1=0,
a=﹣1,
∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.
情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.
∴y=|x+2|,符合题意.
情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,
综上所述,a=﹣2.
故选A.
本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
10、1
【解析】
先由平行四边形的性质以及角平分线的定义判断出∠DAE=∠DEA,继而求得CE的长,再根据三角形中位线定理进行求解即可.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC=4,DC=AB=6,DC//AB,
∴∠EAB=∠AED,
∵∠EAB=∠DAE,
∴∠DAE=∠DEA,
∴DE=AD=4,
∴CE=CD-DE=6-4=2,
∵点F、G分别是BE、BC的中点,
∴FG=EC=1,
故答案为1.
本题考查了平行四边形的性质,等腰三角形的判定,三角形中位线定理,熟练掌握相关内容是解题的关键.
11、
【解析】
连接BD,利用勾股定理列式求出BD,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.
【详解】
解:如图,连接BD,
∵∠C=90°,BC=6,CD=4,
∴BD===2,
∵E、F分别为AB、AD的中点,
∴EF是△ABD的中位线,
∴EF=BD=×2=.
故答案为:.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记定理是解题的关键,难点在于作辅助线构造出三角形.
12、x>1
【解析】
观察函数图象得到即可.
【详解】
解:由图象可得:当x>1时,kx+b>2,
所以不等式kx+b>2的解集为x>1,
故答案为:x>1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13、
【解析】
从1,2,3,4这四个数中一次随机取两个数,
有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;
其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);
则其概率为;
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
利用SSS即可证明.
【详解】
证明:在△ACB与△CAD中
∴△ACB≌△CAD(SSS)
本题考查的是全等三角形的判定,能够根据SSS证明三角形全等是解题的关键.
15、
【解析】
分析:根据二次根式的运算法则即可求出答案.
详解:原式=
=
点睛:本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
16、(1)①见解析;②见解析;(2)见解析
【解析】
(1)根据要求画出图形即可.
(2)根据对角线垂直的四边形是菱形即可判断.
【详解】
(1)解:如图,四边形ABCD即为所求.
(2)证明:∵AM=MC,BM=MD,
∴四边形ABCD是平行四边形,
∵△ABC是等边三角形,AM=MC,
∴BD⊥AC,
∴四边形ABCD是菱形.
本题考查作图——复杂作图,线段的垂直平分线的性质,菱形的判定,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
17、(1)见解析;(2)月销售额定为8.5万合适,见解析.
【解析】
(1)众数就是出现次数最多的数,据此即可求解;中位数就是大小处于中间位置的数,根据定义即可求解;
(2)利用中位数的意义进行回答.
【详解】
(1)A店的中位数为8.5,众数为8.5;
B店的平均数为:.
故答案为:8.5;8.5;8.5;
(2)如果A店想让一半以上的销售员达到销售目标,我认为月销售额定为8.5万合适.
因为中位数为8.5,所以月销售额定为8.5万,有一半左右的营业员能达到销售目标.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
18、(1),,,;(2)乙包装机包装的质量比较稳定.
【解析】
(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;
(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.
【详解】
解:(1) ,
;
,
;
(2)因为
所以乙包装机包装袋糖果的质量比较稳定.
故答案为:(1),,,;(2)乙包装机包装的质量比较稳定.
本题考查平均数、方差的计算以及它们的意义,熟练掌握计算公式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8
【解析】
根据平均数的性质知,要求x1+3,x2+3,x3+3,x4+3的平均数, 只要把数x1,x2,x3,x4的和表示出即可.
【详解】
解:x1,x2,x3,x4的平均数为5
x1+x2+x3+x4=45=20,
x1+3,x2+3,x3+3,x4+3的平均数为:
=( x1+3+ x2+3+ x3+3+ x3+3)4
=(20+12) 4
=8,
故答案为:8.
本题主要考查算术平均数的计算.
20、1
【解析】
如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.
【详解】
如图,四边形ABCD是边长为正方形
则
由勾股定理得:
即这个正方形的两条对角线相等,长为1
故答案为:1.
本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.
21、(1)、;(2)、1.
【解析】
试题分析:(1)根据所给等式确定出一般规律,写出即可;
(2)先将各式分母有理化,此时发现除第二项和倒数第二项外,其他各项的和为0,故可求出答案.
解:(1)﹣
(2)原式=[( ﹣1)+( ﹣ )+( ﹣ )+…+( ﹣ )]( +1)
=( ﹣1)( +1)
=( )2﹣12
=2016﹣1
=1.
点睛:本题主要考查了代数式的探索与规律,二次根式的混合运算,根据所给的等式找到规律是解题的关键.
22、1
【解析】
根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.
【详解】
解:设这个凸多边形的边数是n,根据题意得
(n-2)•110°=3×360°,
解得n=1.
故这个凸多边形的边数是1.
故答案为:1.
本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.
23、5; 1.
【解析】
首先根据其平均数为5求得的值,然后再根据中位数及方差的计算方法计算即可.
【详解】
解:数据3,4,,6,7的平均数是5,
解得:,
中位数为5,
方差为.
故答案为:5;1.
本题考查了平均数、中位数及方差的定义与求法,熟练掌握各自的求法是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3).
【解析】
(1)只需证明△ABM≌△BCN即可得到结论;
(2)由(1)可知AM=BN且AM⊥BN,而ME是由AM绕点M顺时针旋转90度得到,于是可得ME与BN平行且相等,结论显然;
(3)易证AMEF为正方形,从而问题转化为求两个正方形的边长之比,由于已经知道BM与BC之比,设BM=a,则由勾股定理易求AM.
【详解】
解:(1)∵ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
又∵BM=CN,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠BMA=90°,
∴∠CBN+∠BMA=90°,
∴AM⊥BN;
(2)∵将线段AM绕M顺时针旋转90°得到线段ME,
∴ME=AM,ME⊥AM,
∵△ABM≌△BCN,
∴AM=BN,
∵AM⊥BN,
∴BN=ME,且BN∥ME,
∴四边形BMEN是平行四边形;
(3)∵将线段AM绕M顺时针旋转90°得到线段ME,将△ABM绕A逆时针旋转90°得到△ADF,
∴∠MAF=∠AME=90°,AF=ME=AM
∴AF∥ME,
∴AMEF是正方形,
∵,可以设BM=a,AB=na,
在直角三角形ABM中,AM=,
∴.
本题为四边形综合题,主要考查了正方形的判定与基本性质、全等三角形的判定与性质、平行四边形的判定与性质、旋转变换的性质、勾股定理等重要知识点,难度不大.本题虽然简单,但其所包含的基本模型却是很多题的原型,熟练掌握有助于解决相关的较难题目.
25、(1);(2)x<2或x>时,有y>﹣2;(3)点C的坐标为(2,0)或(12,0)或(-1,0)或(0,1)或(0,-7).
【解析】
(1)利用待定系数法可得k和b的值;
(2)将y=-2代入函数中,分别计算x的值,根据图象可得结论;
(3)分两种情况画图,以∠BAC和∠ABC为顶角,根据AB=5和对称的性质可得点C的坐标.
【详解】
(1)当x=3时,a=-3,
∴B(3,-3),
把B(3,-3)和点A(7,0)代入y=kx+b中,
得:,解得:;
(2)当y=-2时,-x=-2,x=2,
,
解得,,
如图1,由图象得:当x<2或x>时,y>-2;
(3)∵B(3,-3)和点A(7,0),
∴AB==5,
①以∠BAC为顶角,AB为腰时,如图2,AC=AB=5,
∴C(2,0)或(12,0);
②以∠ABC为顶角,AB为腰时,如图3,以B为圆心,以AB为腰画圆,当△ABC是等腰三角形时,此时存在三个点C,
得C3(-1,0),
由C3与C4关于直线 y=-x对称得:C4(0,1)
由C5与点A关于直线y=-x对称得:C5(0,-7)
综上,点C的坐标为(2,0)或(12,0)或(-1,0)或(0,1)或(0,-7).
本题是分段函数与三角形的综合问题,考查了待定系数法求函数解析式以及等腰三角形的判定,同时还要注意运用数形结合与分类讨论的思想解决问题.
26、(1)证明见解析;(2)证明见解析.
【解析】
(1)利用平行四边形的性质结合全等三角形的判定方法(AAS),得出即可;
(2)利用全等三角形的性质得出AE=CF,进而求出四边形AFCE是平行四边形.,再利用菱形的判定方法得出答案.
【详解】
(1)如图1.
∵四边形ABCD是平行四边形,
∴AB∥DC,AB="DC."
∴∠1=∠2.
∵AE∥CF,
∴∠3=∠4.
在△AEB和△CFD中,
,
∴△AEB≌△CFD;
(2)如图2.
∵△AEB≌△CFD,
∴AE=CF.
∵AE∥CF,
∴四边形AFCE是平行四边形.
∵∠5=∠4,∠3=∠4,
∴∠5=∠3.
∴AF=AE.
∴四边形AFCE是菱形.
题号
一
二
三
四
五
总分
得分
时间小时
5
6
7
8
人数
10
10
20
10
平均数
中位数
众数
A店
8.5
B店
8
10
2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省西安市师大附中九上数学开学考试模拟试题【含答案】: 这是一份2024-2025学年陕西省西安市师大附中九上数学开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省西安市陕西师大附中数学九年级第一学期开学联考模拟试题【含答案】: 这是一份2024-2025学年陕西省西安市陕西师大附中数学九年级第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。