2024年陕西省西安市高新第二初级中学九上数学开学检测试题【含答案】
展开
这是一份2024年陕西省西安市高新第二初级中学九上数学开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=5x-4的图象经过( ).
A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限
2、(4分)下列条件中,不能判定一个四边形是平行四边形的是( )
A.两组对边分别平行B.两组对边分别相等
C.两组对角分别相等D.一组对边平行且另一组对边相等
3、(4分)如图,丝带重叠的部分一定是( )
A.菱形B.矩形C.正方形D.都有可能
4、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是( )
A.甲B.乙C.丙D.丁
5、(4分)如图①,正方形中,点以每秒2cm的速度从点出发,沿的路径运动,到点停止.过点作与边(或边)交于点的长度与点的运动时间(秒)的函数图象如图②所示.当点运动3秒时,的面积为( )
A.B.C.D.
6、(4分)下列选项中,矩形具有的性质是( )
A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角
7、(4分)已知y=(k-3)x|k|-2+2是一次函数,那么k的值为( )
A.B.3C.D.无法确定
8、(4分)已知,则( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知分式,当x=1时,分式无意义,则a=___________.
10、(4分)若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的方差是___.
11、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)
12、(4分)如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.
13、(4分)若直角三角形的斜边长为6,则这个直角三角形斜边的中线长________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知一次函数y=x+b的图象与反比例函数y= (x0时,直线必经过一、三象限.k0时,直线与y轴正半轴相交.b=0时,直线过原点;b1
此题考查二次根式有意义的条件,掌握其定义是解题关键
20、1
【解析】
根据勾股定理计算,得到答案.
【详解】
解:斜边长==1,
故答案为:1.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
21、1.
【解析】
先根据直角三角形斜边上的中线等于斜边的一半求出AB的长,再根据三角形中位线定理求出EF的长即可.
【详解】
中,,D是AB的中点,
即CD是直角三角形斜边上的中线,
,
又分别是的中点,
∴是的中位线,
,
故答案为:1.
此题主要考查了直角三角形的性质以及三角形中位线定理,熟练掌握它们的性质是解答此题的关键.
22、5
【解析】
根据十字相乘的进行因式分解即可得出答案.
【详解】
根据题意可得:
∴
∴k=5
故答案为5.
本题考查的是因式分解,难度适中,需要熟练掌握因式分解的步骤.
23、4x(x+1)(x-1)
【解析】
4x3-4x=4x(x2-1)=4x(x+1)(x-1).
故答案为4x(x+1)(x-1).
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)四边形AECF是菱形.证明见解析.
【解析】
(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠1,从而利用ASA判定△ABE≌△AD′F;
(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.
【详解】
解:(1)由折叠可知:∠D=∠D′,CD=AD′,
∠C=∠D′AE.
∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,∠C=∠BAD.
∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,
即∠1+∠2=∠2+∠1.
∴∠1=∠1.
在△ABE和△AD′F中
∵
∴△ABE≌△AD′F(ASA).
(2)四边形AECF是菱形.
证明:由折叠可知:AE=EC,∠4=∠2.
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠2=∠3.
∴∠4=∠3.
∴AF=AE.
∵AE=EC,
∴AF=EC.
又∵AF∥EC,
∴四边形AECF是平行四边形.
又∵AF=AE,
∴平行四边形AECF是菱形.
考点:1.全等三角形的判定;2.菱形的判定.
25、详见解析
【解析】
根据正方形的性质可得AB=AD,∠BAD=90°,再根据∠AEB=∠AFD=90°,∠ABE+∠BAE=90°,得到∠ABE=∠DAF,然后通过“角角边”证得△ABE ≌△ADF,则可得AE=DF.
【详解】
证明∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠DAF+∠BAE=90°,
又∵DF⊥AP,BE⊥AP,
∴∠AEB=∠AFD=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE=∠DAF,
在△ABE 与△ADF中,
,
∴△ABE ≌△ADF(AAS),
∴AE=DF(全等三角形对应边相等).
26、证明见解析
【解析】
根据平行四边形性质得出AD//BC,AD=BC,求出AF=EC,AF//EC,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可
【详解】
证明:∵四边形是平行四边形,
∴且,
又∵,
∴,
,
∴四边形是平行四边形.
此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理
题号
一
二
三
四
五
总分
得分
购买量/kg
0.5
1
1.5
2
2.5
3
3.5
4
…
付款金额/元
相关试卷
这是一份陕西省西安市高新逸翠园初级中学2024-2025学年九年级上学期开学考试数学试题,共8页。
这是一份陕西省西安市高新第二初级中学2023-2024学年九年级下学期开学考试数学试题,共27页。试卷主要包含了 《清朝野史大观·清代述异》称, 已知抛物线等内容,欢迎下载使用。
这是一份陕西省西安市高新第二初级中学2023-2024学年+下学期开学考试九年级数学试题,共6页。