年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】

    2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】第1页
    2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】第2页
    2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】

    展开

    这是一份2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是( )
    A.3
    B.4
    C.5
    D.6
    2、(4分)小刚以400 m/min的速度匀速骑车5 min,在原地休息了6 min,然后以500 m/min的速度骑回出
    发地,小刚与出发地的距离s(km)关于时间t(min)的函数图象是
    A.B.C.D.
    3、(4分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
    A.x>﹣2B.x>0C.x>1D.x<1
    4、(4分)用反证法证明“四边形中至少有一个角是钝角或直角”,则应先假设( )
    A.至少有一个角是锐角B.最多有一个角是钝角或直角
    C.所有角都是锐角D.最多有四个角是锐角
    5、(4分)已知一次函数,y随着x的增大而减小,且,则它的大致图象是( )
    A.B.C.D.
    6、(4分)为了从甲、乙两名选手中选拔一名参加射击比赛,现对他们进行一次测验,两个人在相同的条件下各射靶10次,为了比较两人的成绩,制作了如下统计表:
    若想选拔一位成绩稳定的选手参赛,则表中几个数据应该重点关注的是( )
    A.中位数B.平均数C.方差D.命中10环的次数
    7、(4分)下列调查中,不适合普查但适合抽样调查的是( )
    A.调查年级一班男女学生比例B.检查某书稿中的错别字
    C.调查夏季冷饮市场上冰淇凌的质量D.调查载人航天飞船零件部分的质量
    8、(4分)下列计算正确的是( )
    A.B.=3C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)解方程:(1)2x2﹣5x+1=0(用配方法);
    (2)5(x﹣2)2=2(2﹣x).
    10、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是 (填“甲”或“乙“).
    11、(4分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为____________.
    12、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
    13、(4分)在平面直角坐标系中,将直线y=2x-1向上平移动4个单位长度后,所得直线的解析式为____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.
    (1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;
    (2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;
    (3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.
    15、(8分)师徒两人分别加工1200个零件,已知师傅每天加工零件的个数是徒弟每天加工零件个数的1.5倍,结果师傅比徒弟少用10天完成,求徒弟每天加工多少个零件?
    16、(8分)先阅读材料:
    分解因式:.
    解:令,

    所以.
    材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:
    (1)分解因式:__________;
    (2)分解因式:;
    (3)证明:若为正整数,则式子的值一定是某个整数的平方.
    17、(10分)已知四边形,,与互补,以点为顶点作一个角,角的两边分别交线段,于点,,且,连接,试探究:线段,,之间的数量关系.
    (1)如图(1),当时,,,之间的数量关系为___________.
    (2)在图(2)的条件下(即不存在),线段,,之间的数量关系是否仍然成立?若成立,请完成证明;若不成立,请说明理由.
    (3)如图(3),在腰长为的等腰直角三角形中,,,均在边上,且,若,求的长.
    18、(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
    (1)在图1中以格点为顶点画一个面积为10的正方形;
    (2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;
    (3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若有增根,则m=______
    20、(4分)计算:(2+)(2-)=_______.
    21、(4分)已知关于的方程的一个解为1,则它的另一个解是__________.
    22、(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是__________.
    23、(4分)在函数y=中,自变量x的取值范围是_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
    (1)求证:△BDE∽△BAC;
    (2)已知AC=6,BC=8,求线段AD的长度.
    25、(10分)嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.
    (1)求5张白纸粘合后的长度;
    (2)设x张白纸粘合后总长为ycm.写出y与x之间的函数关系式;
    (3)求当x=20时的y值,并说明它在题目中的实际意义.
    26、(12分)解不等式组,并在数轴上把解集表示出来.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,
    ∵折叠,
    ∴CD=CF=10,EF=DE,
    在Rt△BCF中,BF==6,
    ∴AF=AB-BF=10-6=4,
    在Rt△AEF中,AE2+AF2=EF2,
    ∴AE2+16=(8-AE)2,
    ∴AE=3,
    故选A.
    本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.
    2、C
    【解析】
    【分析】根据题意分析在各个时间段小刚离出发点的距离,结合图象可得出结论.
    【详解】由已知可得,前5min小刚与出发地相距2千米,后6min距离不变,之后距离逐渐减少.故选项C符合实际情况.
    故选:C
    【点睛】本题考核知识点:函数的图形. 解题关键点:结合实际分析函数图像.
    3、C
    【解析】
    试题分析:当x>1时,x+b>kx+4,
    即不等式x+b>kx+4的解集为x>1.
    故选C.
    考点:一次函数与一元一次不等式.
    4、C
    【解析】
    反证法的步骤中,第一步是假设结论不成立,反面成立.
    【详解】
    用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:所有角都是锐角.
    故选C.
    此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
    5、A
    【解析】
    由y随着x的增大而减小,可知,根据k,b的取值范围即可确定一次函数所经过的象限.
    【详解】
    解:y随着x的增大而减小,

    一次函数的图像经过第一、二、四象限,不经过第三象限.
    故答案为:A
    本题考查了一次函数的图像与性质,确定k的取值范围是解题的关键.
    6、C
    【解析】
    方差是反映一组数据的波动大小,比较甲、乙两人的成绩的方差作出判断.
    【详解】
    ∵,S甲=3.7<S乙=5.4,
    ∴应选择甲去参加比赛,
    故选C.
    本题考查一组数据的方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定.
    7、C
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多且具有破坏性,而抽样调查得到的调查结果比较近似.据此解答即可.
    【详解】
    A.调查年级一班男女学生比例,调查范围小,准确度要求高,适合普查,故该选项不符合题意,
    B.检查某书稿中的错别字是准确度要求高的调查,适合普查,故该选项不符合题意.
    C.调查夏季冷饮市场上冰淇凌的质量具有破坏性,不适合普查,适合抽样调查,故该选项符合题意,
    D.调查载人航天飞船零件部分的质量是准确度要求高的调查,适合普查,故该选项不符合题意.
    故选C
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    8、D
    【解析】
    根据二次根式的运算法则逐一计算可得.
    【详解】
    解:A、、不是同类二次根式,不能合并,此选项错误;
    B、3﹣=2,此选项错误;
    C、×=,此选项错误;
    D、=,此选项正确;
    故选D.
    本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(1)x1=,x2=;(2)x1=2,x2=
    【解析】
    (1)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解;
    (2)移项后分解因式,即可可得出两个一元一次方程,求出方程的解即可.
    【详解】
    解:(1)



    (2)


    本题考查了利用配方法、因式分解法解一元二次方程,正确计算是解题的关键.
    10、乙
    【解析】
    解:∵S甲2=2,S乙2=1.5,
    ∴S甲2>S乙2,
    ∴乙的射击成绩较稳定.
    故答案为乙.
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    11、36°
    【解析】
    ∵多边形ABCDE是正五边形,
    ∴∠BAE==108°,
    ∴∠1=∠2=(180°-∠BAE),
    即2∠1=180°-108°,
    ∴∠1=36°.
    12、
    【解析】
    试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.
    故答案为.
    点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.
    13、y=2x+1
    【解析】
    根据直线平移k值不变,只有b发生改变进行解答即可.
    【详解】
    由题意得:平移后的解析式为:y=2x-1+4,
    y=2x+1,
    故填:y=2x+1.
    本题考查了一次函数图象与几何变换,在解题时,紧紧抓住直线平移后k值不变这一性质即可.
    三、解答题(本大题共5个小题,共48分)
    14、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)
    【解析】
    (1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC, ,即可判定为平行四边形;
    (2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;
    (3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.
    【详解】
    解:(1)①,②平行四边形;
    由已知条件和三角形中位线定理,得
    又∵

    ②由三角形中位线定理得,
    DE∥AC, ,
    ∴四边形是平行四边形;
    (2)结论①不变,结论②由平行四边形变为菱形,
    四边形是菱形的理由是:
    ∵,都是的中位线,
    ∴,
    ∴四边形是平行四边形
    ∵是的中位线,


    ∴,

    ∴平行四边形是菱形.
    (3)设,
    当,是等腰直角三角形,


    由三角形中位线定理得,,
    ∴,且和互相垂直平分
    ∴四边形为正方形,
    ∵,EF⊥AD,


    又∵,
    ∴四边形为矩形,
    ∴,
    ∴所求面积比为
    (1)此题主要考查三角形中位线定理的应用,利用其进行等式转换和平行四边形的判定,即可得解;
    (2)此题主要考查菱形的判定,熟练掌握,即可解题;
    (3)此题主要考查正方形和矩形的判定,关键是利用正方形和矩形的面积关系式,即可解题.
    15、徒弟每天加工40个零件.
    【解析】
    设徒弟每天加工x个零件,根据工作时间=工作总量÷工作效率,结合师傅比徒弟少用10天完成,即可得出关于x的分式方程.
    【详解】
    解:设徒弟每天加工个零件,则师傅每天加工个零件.
    由题意得:,
    解得,
    经检验:是原方程的解.
    答:徒弟每天加工40个零件.
    本题考查了分式方程的应用.找到关键描述语,找到合适的等量关系是解决问题的关键.
    16、(1);(2);(3)证明见解析.
    【解析】
    (1)令,根据材料中的解题过程和完全平方公式因式分解即可;
    (2)令,根据材料中的解题过程和完全平方公式因式分解即可;
    (3)根据多项式乘多项式法则和完全平方公式因式分解,即可得出结论.
    【详解】
    解:(1)令,

    所以.
    (2)令,


    所以.
    (3)

    ∵是正整数,
    ∴也为正整数.
    ∴式子的值一定是某一个整数的平方.
    此题考查的是因式分解,掌握利用“整体思想”和完全平方公式因式分解是解决此题的关键.
    17、(1);(2)成立;证明见解析;(3).
    【解析】
    (1)将△ABE绕点A逆时针旋转90°,得到△ADG,据此知AE=AG,BE=DG,∠BAE=∠DAG,证明△AFE≌△AFG可得EF=FG,从而得出答案.
    (2)将△ABE绕点A逆时针旋转得到△ADH,知∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH,证明△AEF≌△AHF得.
    (3)将△AEC绕点A顺时针旋转90°,得到△,连接,据此知,,∠C=∠,,由知,即,从而得到,易证得,根据可得答案.
    【详解】
    (1)延长到,使,连接,
    在正方形中,

    在和中,

    ,,


    在和中,




    (2)延长交点,使,连接,

    ,,
    ,,



    (3)将绕点旋转至,连接,


    ,,


    设,
    ,,



    本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
    18、(1)详见解析;(2)详见解析;(3)450
    【解析】
    (1)根据勾股定理画出边长为的正方形即可;
    (2)根据勾股定理和已知画出符合条件的三角形即可;
    (3)连接AC、CD,求出△ACB是等腰直角三角形即可.
    【详解】
    (1)如图1的正方形的边长是,面积是10;
    (2)如图2的三角形的边长分别为2,、;
    (3)如图3,连接AC,
    因为AB2=22+42=20,AC2=32+12=10,BC2=32+12=10,
    所以AB2= AC2+ BC2,AC=BC
    ∴三角形ABC是等腰直角三角形,
    ∴∠ABC=∠BAC=45°.
    本题考查了勾股定理逆定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.
    【详解】
    方程两边都乘(x-3),得
    x-1(x-3)=1-m,
    ∵方程有增根,
    ∴最简公分母x-3=0,即增根是x=3,
    把x=3代入整式方程,得m=-1.
    故答案是:-1.
    解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    20、1
    【解析】
    根据实数的运算法则,利用平方差公式计算即可得答案.
    【详解】
    (2+)(2-)
    =22-()2
    =4-3
    =1.
    故答案为:1
    本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.
    21、
    【解析】
    根据一元二次方程解的定义,将x=1代入原方程列出关于k的方程,通过解方程求得k值;最后根据根与系数的关系求得方程的另一根.
    【详解】
    解:将x=1代入关于x的方程x2+kx−1=0,
    得:1+k−1=0
    解得:k=2,
    设方程的另一个根为a,
    则1+a=−2,
    解得:a=−1,
    故方程的另一个根为−1.
    故答案是:−1.
    本题考查的是一元二次方程的解集根与系数的关系.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
    22、﹣3
    【解析】
    令时,解得,故与轴的交点为.由函数图象可得,当时,函数的图象在轴上方,且其函数图象在函数图象的下方,故解集是,所以关于的不等式的整数解为.
    23、x≥﹣2且x≠0
    【解析】
    根据题意得x+2≥0且x≠0,即x≥-2且x≠0.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见试题解析;(2).
    【解析】
    (1)由折叠的性质可知∠C=∠AED=90°,因为∠DEB=∠C,∠B=∠B证明三角形相似即可;
    (2)由折叠的性质知CD=DE,AC=AE.在Rt△BDE中运用勾股定理求DE,进而得出AD即可.
    【详解】
    (1)∵∠C=90°,△ACD沿AD折叠,
    ∴∠C=∠AED=90°,
    ∴∠DEB=∠C=90°,
    ∵∠B=∠B,
    ∴△BDE∽△BAC;
    (2)由勾股定理得,AB=10,
    由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°,
    ∴BE=AB﹣AE=10﹣6=4,
    在Rt△BDE中,由勾股定理得,,
    即,
    解得:CD=3,
    在Rt△ACD中,由勾股定理得,
    即,
    解得:AD=.
    1.相似三角形的判定与性质;2.翻折变换(折叠问题).
    25、(1)1cm;(2)y=17x+2;(2)242cm
    【解析】
    (1)根据图形可得5张白纸的长减去粘合部分的长度即可;
    (2)根据题意x张白纸的长减去粘合部分的长度就是y的值;
    (2)把x=20代入(2)得到的函数解析式即可求解.
    【详解】
    解:(1)由题意得,20×5-2×(5-1)=1.
    则5张白纸粘合后的长度是1cm;
    (2)y=20x-2(x-1),即y=17x+2.
    (2)当x=20时,y=17×20+2=242.
    答:实际意义是:20张白纸粘合后的长度是242cm.
    本题考查了函数的关系式,正确理解纸条的长度等于白纸的长度减去粘合部分的长度是关键.
    26、x>1
    【解析】
    分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
    【详解】
    解:
    解不等式①,得x>1,
    解不等式②,得x≥-4,
    把不等式①和②的解集在数轴上表示出来为:
    ∴原不等式组的解集为x>1,
    本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.
    题号





    总分
    得分
    平均数
    中位数
    方差
    命中10环的次数

    9.5
    9.5
    3.7
    1

    9.5
    9.6
    5.4
    2

    相关试卷

    2023-2024学年上海市宝山区淞谊中学九上数学期末检测试题含答案:

    这是一份2023-2024学年上海市宝山区淞谊中学九上数学期末检测试题含答案,共8页。试卷主要包含了不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    2023-2024学年上海市宝山区淞谊中学九上数学期末达标检测模拟试题含答案:

    这是一份2023-2024学年上海市宝山区淞谊中学九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=x2﹣2x+m,如果,那么代数式的值是.,已知,则为,方程 x2=4的解是等内容,欢迎下载使用。

    2023-2024学年上海市宝山区淞谊中学八上数学期末学业水平测试试题含答案:

    这是一份2023-2024学年上海市宝山区淞谊中学八上数学期末学业水平测试试题含答案,共8页。试卷主要包含了已知一次函数y=kx﹣b等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map