终身会员
搜索
    上传资料 赚现金
    2024年上海市民办新竹园中学数学九上开学复习检测试题【含答案】
    立即下载
    加入资料篮
    2024年上海市民办新竹园中学数学九上开学复习检测试题【含答案】01
    2024年上海市民办新竹园中学数学九上开学复习检测试题【含答案】02
    2024年上海市民办新竹园中学数学九上开学复习检测试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年上海市民办新竹园中学数学九上开学复习检测试题【含答案】

    展开
    这是一份2024年上海市民办新竹园中学数学九上开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)式子在实数范围内有意义,则的取值范围是( )
    A.B.C.D.
    2、(4分)如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB的延长线于点F,则在题中条件下,下列结论不能成立的是( )
    A.BE=CEB.AB=BFC.DE=BED.AB=DC
    3、(4分)一次函数y=-kx+k与反比例函数y=-(k≠0)在同一坐标系中的图象可能是( )
    A.B.C.D.
    4、(4分)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    5、(4分)如图,在中,=55°,,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接,则的度数为( )
    A.B.C.D.
    6、(4分)如图4,在中,,点为斜边上一动点,过点作于点 , 于点 ,连结 ,则线段的最小值为
    A.1.2B.2.4C.2.5D.4.8
    7、(4分)如图.在正方形中,为边的中点,为上的一个动点,则的最小值是( )
    A.B.C.D.
    8、(4分)如图,在四边形中,,分别是的中点,则四边形一定是( )
    A.平行四边形B.矩形C.菱形D.正方形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.
    10、(4分)如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.
    11、(4分)若实数、满足,则以、的值为边长的等腰三角形的周长为

    12、(4分)已知,,,,,……(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,____________.
    13、(4分)如图,小芳作出了边长为1的第1个正△A1B1C1.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2;用同样的方法,作出了第3个正△A3B3C3,……,由此可得,第个正△AnBnCn的边长是___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某校八年级(1)班要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”,为此,数学老师对两位同学进行了辅导,并在辅导期间测验了6次,测验成绩如下表(单位:分):
    次数,1, 2, 3, 4, 5, 6
    甲:79,78,84,81,83,75
    乙:83,77,80,85,80,75
    利用表中数据,解答下列问题:
    (1)计算甲、乙测验成绩的平均数.
    (2)写出甲、乙测验成绩的中位数.
    (3)计算甲、乙测验成绩的方差.(结果保留小数点后两位)
    (4)根据以上信息,你认为老师应该派甲、乙哪名学生参赛?简述理由.
    15、(8分)如图,甲、乙两船同时从A港口出发,甲船以每小时30海里的速度向西偏北32°的方向航行2小时到达C岛,乙船以每小时40海里的速度航行2小时到B岛,已知B、C两岛相距100海里,求乙船航行的方向.
    16、(8分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
    (l)当点C与点O重合时,DE= ;
    (2)当CE∥OB时,证明此时四边形BDCE为菱形;
    (3)在点C的运动过程中,直接写出OD的取值范围.
    17、(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.
    (1)试说明△ABD≌△BCE;
    (2)△AEF与△BEA相似吗?请说明理由;
    (3)BD2=AD·DF吗?请说明理由.
    18、(10分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.
    (1)求证:四边形ABEF为菱形;
    (2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)数据2,0,1,9,0,6,1,6的中位数是______.
    20、(4分)二次根式在实数范围内有意义,x的取值范围是_____.
    21、(4分)如图,在等腰直角三角形ACD,∠ACD=90°,AC=,分别以边AD,AC,CD为直径面半图,所得两个月形图案AGCE和DHCF的面积之和(图中阴影部分)为_____________.
    22、(4分)如图,在中,,,,则__________.
    23、(4分)如图,在反比例函数的图象上有四个点,,,,它们的横坐标依次为,,,,分别过这些点作轴与轴的垂线,则图中阴影部分的面积之和为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)分解因式:x(x﹣y)﹣y(y﹣x)
    (2)解不等式组,并把它的解集在数轴上表示出来.
    25、(10分)如图,在中,,点是边上的中点,、分别垂直、于点和.求证:
    26、(12分)如图,一张矩形纸片.点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点分别落在点处,
    (1)若,则的度数为 °;
    (2)若,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;
    【详解】
    解:式子在实数范围内有意义,
    即: ,
    解得:,
    故选:D;
    本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.
    2、C
    【解析】
    A选项:由中点的定义可得;B选项:先根据AAS证明△BEF≌△CED可得:DC=BF,再加上AB=DC即可得;C选项:DE和BE不是对应边,故是错误的;D选项:由平行四边形的性质可得.
    【详解】
    解:∵平行四边形ABCD中,E是BC边的中点,
    ∴AB=DC,AB//DC,BE=CE,(故A、D选项正确)
    ∴∠EBF=∠ECD,∠EFB=∠EDC,
    在△BEF和△CED中

    ∴△BEF≌△CED(AAS)
    ∴DC=BF,
    又∵AB=DC,
    ∴AB=BF.(故B选项正确).
    所以A、B、D选项正确.
    故选C.
    运用了平行四边形的性质,解题时,关键根据平行四边形的性质和中点的定义证明△BEF≌△CED,得到DC=BF,再根据等量代换得到AB=BF.
    3、C
    【解析】
    根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.
    【详解】
    解:A、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;
    B、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;
    C、∵由反比例函数的图象在二、四象限可知,-k<0,∴k>0,∴一次函数y=-kx+k的图象经过一、二、四象限,故本选项正确;
    D、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误.
    故选C.
    本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.
    4、B
    【解析】
    试题分析:第一象限点的坐标为(+,+);第二象限点的坐标为(-,+);第三象限点的坐标为(-,-);第四象限点的坐标为(+,-),则点P在第二象限.
    考点:平面直角坐标系中的点
    5、A
    【解析】
    根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.
    【详解】
    在△ABC中,∵∠B=55°,∠C=30°,
    ∴∠BAC=180°−∠B−∠C=95°,
    由作图可知MN为AC的中垂线,
    ∴DA=DC,
    ∴∠DAC=∠C=30°,
    ∴∠BAD=∠BAC−∠DAC=65°,
    故选:A.
    此题考查线段垂直平分线的性质,作图—基本作图,解题关键在于求出∠BAC=95°.
    6、B
    【解析】
    连接PC,证明四边形PECF是矩形,从而有EF=CP,当CP⊥AB时,PC最小,利用三角形面积解答即可.
    【详解】
    解:连接PC,
    ∵PE⊥AC,PF⊥BC,
    ∴∠PEC=∠PFC=∠C=90°,
    ∴四边形ECFP是矩形,
    ∴EF=PC,
    ∴当PC最小时,EF也最小,
    即当CP⊥AB时,PC最小,
    ∵AC=1,BC=3,
    ∴AB=5,
    ∴PC的最小值为:
    ∴线段EF长的最小值为2.1.
    故选B.
    本题考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.
    7、A
    【解析】
    根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.
    【详解】
    解:四边形为正方形
    关于的对称点为.
    连结交于点,如图:
    此时的值最小,即为的长.
    ∵为中点,BC=4,
    ∴BE=2,
    ∴.
    故选:A.
    本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
    8、B
    【解析】
    根据三角形中位线定理,平行四边形的判定定理得到四边形EFGH为平行四边形,证明∠FGH=90°,根据矩形的判定定理证明.
    【详解】
    ∵E,F分别是边AB,BC的中点,
    ∴EF=AC,EF∥AC,
    同理,HG=AC,HG∥AC,
    ∴EF=HG,EF∥HG,
    ∴四边形EFGH为平行四边形,
    ∵F,G分别是边BC,CD的中点,
    ∴FG∥BD,

    ∴∠FGH=90°,
    ∴平行四边形EFGH为矩形,
    故选B.
    本题考查的是中点四边形,掌握三角形中位线定理,矩形的判定定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3.
    【解析】
    试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质, 则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.
    考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.
    10、26cm
    【解析】
    先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.
    【详解】
    ∵△ABC沿BC方向平移3cm得到△DEF,
    ∴DF=AC,AD=CF=3cm,
    ∵△ABC的周长为20cm,即AB+BC+AC=20cm,
    ∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),
    即四边形ABFD的周长为26cm.
    故答案是:26cm.
    考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
    11、20。
    【解析】
    先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:
    根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8。
    ①4是腰长时,三角形的三边分别为4、4、8,
    ∵4+4=8,∴不能组成三角形,
    ②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20。
    所以,三角形的周长为20。
    12、-
    【解析】
    根据Sn数的变化找出Sn的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.
    【详解】
    解:S1=,S2=-S1-1=--1=-,S3==-,S4=-S3-1= ,=-(a+1),S6=-S5-1=(a+1)-1=a,S7= ,…,
    ∴Sn的值每6个一循环.
    ∵2018=336×6+2,
    ∴S2018=S2=-.
    故答案为:-.
    此题考查规律型中数字的变化类,根据数值的变化找出Sn的值,每6个一循环是解题的关键.
    13、
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半,分别求出各三角形的边长,再根据等边三角形的边长的变换规律求解即可.
    【详解】
    解:由题意得,△A2B2C2的边长为
    △A3B3C3的边长为
    △A4B4C4的边长为
    …,
    ∴△AnBnCn的边长为
    故答案为:
    本题考查了三角形中位线定理,三角形的中位线平行于第三边并且等于第三边的一半,根据规律求出第n个等边三角形的边长是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)80分,80分 ;(2)80分; (3)9.33,11.33 ;(4)派甲去.
    【解析】
    试题分析:本题考查了方差, 算术平均数, 中位数的计算.
    (1)由平均数的计算公式计算甲、乙测试成绩的平均分;
    (2)将一组数据从小到大(或从大到小)重新排列后,中间两个数的平均数是甲、乙测试成绩的中位数;
    (3)由方差的计算公式计算甲、乙测试成绩的方差;
    (4)方差越小,表明这个同学的成绩偏离平均数越小,即波动越小,成绩越稳定.
    解:(1)x甲=(分),
    x乙=(分).
    (2)甲、乙测验成绩的中位数都是80分.
    (3)=[(79-80)2+(78-80)2+(84-80)2+(81-80)2+(83-80)2+(75-80)2]≈9.33,
    =[(83-80)2+(77-80)2+(80-80)2+(85-80)2+(80-80)2+(75-80)2]≈11.33.
    (4)结合以上信息,应该派甲去,因为在平均数和中位数都相同的情况下,甲的测验成绩更稳定.
    15、乙船航行的方向是东偏北58°方向.
    【解析】
    首先计算出甲乙两船的路程,再根据勾股定理逆定理可证明∠BAC=90°,然后再根据C岛在A西偏北32°方向,可得B岛在A东偏北58°方向.
    【详解】
    解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里,且BC=100海里,
    ∵AC2+AB2=602+802=10000,
    BC2=1002=10000,
    ∴AC2+AB2=BC2,
    ∴∠BAC=90°,
    ∵C岛在A西偏北32°方向,
    ∴B岛在A东偏北58°方向.
    ∴乙船航行的方向是东偏北58°方向.
    此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    16、(1)1;(1)证明见解析;(3)≤OD≤1.
    【解析】
    (1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
    (1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
    (3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
    【详解】
    解:∵直线AB的解析式为y=﹣1x+4,
    ∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,
    (1)当点C与点O重合时如图所示,
    ∵DE垂直平分BC(BO),
    ∴DE是△BOA的中位线,
    ∴DE=OA=1;
    故答案为:1;
    (1)当CE∥OB时,如图所示:
    ∵DE为BC的中垂线,
    ∴BD=CD,EB=EC,
    ∴∠DBC=∠DCB,∠EBC=∠ECB,
    ∴∠DCE=∠DBE,
    ∵CE∥OB,
    ∴∠CEA=∠DBE,
    ∴∠CEA=∠DCE,
    ∴BE∥DC,
    ∴四边形BDCE为平行四边形,
    又∵BD=CD,
    ∴四边形BDCE为菱形.
    (3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;
    当点C与点A重合时,OD取得最小值,如图所示:
    在Rt△AOB中,AB==1,
    ∵DE垂直平分BC(BA),
    ∴BE=BA=,
    易证△BDE∽△BAO,
    ∴,即,
    解得:BD=,
    则OD=OB﹣BD=4﹣=.
    综上可得:≤OD≤1.
    本题考查一次函数综合题.
    17、 (1)见解析;(2)见解析;(3)见解析;
    【解析】
    (1)∵△ABC是等边三角形,
    ∴AB=BC,∠ABD=∠BCE,
    又∵BD=CE,
    ∴△ABD≌△BCE;
    (2)△AEF与△BEA相似.
    由(1)得:∠BAD=∠CBE,
    又∵∠ABC=∠BAC,
    ∴∠ABE=∠EAF,
    又∵∠AEF=∠BEA,
    ∴△AEF∽△BEA;
    (3)BD2=AD•DF.
    由(1)得:∠BAD=∠FBD,
    又∵∠BDF=∠ADB,
    ∴△BDF∽△ADB,
    ∴,
    即BD2=AD•DF.
    本题主要考查等边三角形的性质和全等三角形的判定与性质以及相似三角形的判定和性质等知识点,解答本题的关键是要熟练掌握三角形全等的判定与性质定理.
    18、(1)见解析;(2)1.
    【解析】
    (1)先证四边形ABEF为平行四边形,继而再根据AB=AF,即可得四边形ABEF为菱形;
    (2)由四边形ABEF为菱形可得AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,求出AO的长即可得答案.
    【详解】
    (1)由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠FAE=∠AEB,
    ∴∠BAE=∠AEB,
    ∴AB=BE,
    ∴BE=FA,
    ∴四边形ABEF为平行四边形,
    ∵AB=AF,
    ∴四边形ABEF为菱形;
    (2)∵四边形ABEF为菱形,
    ∴AE⊥BF,BO=FB=3,AE=2AO,
    在Rt△AOB中,AO==4,
    ∴AE=2AO=1.
    本题考查了平行四边形的性质,菱形的判定与性质,熟练掌握相关知识是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.2
    【解析】
    根据中位数的意义,将这组数据从小到大排序后,处在第4、2位置的两个数的平均数是中位数,即可解答.
    【详解】
    解:将这组数据从小到大排序后,处在第4、2位的两个数的平均数为(1+2)÷2=1.2,
    因此中位数是1.2.
    故答案为:1.2.
    此题考查中位数的意义,把一组数据从小到大排列后找出处在中间位置的一个数或两个数的平均数是解题关键.
    20、x≤1
    【解析】
    根据二次根式有意义的条件列出不等式,解不等式即可.
    【详解】
    解:由题意得,1﹣x≥0,
    解得,x≤1,
    故答案为x≤1.
    本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
    21、1
    【解析】
    由勾股定理可得AC2+CD2=AD2,然后确定出S半圆ACD=S半圆AEC+S半圆CFD,从而得证.
    【详解】
    解:∵△ACD是直角三角形,
    ∴AC2+CD2=AD2,
    ∵以等腰Rt△ACD的边AD、AC、CD为直径画半圆,
    ∴S半圆ACD=π•AD2,S半圆AEC=π•AC2,S半圆CFD=π•CD2,
    ∴S半圆ACD=S半圆AEC+S半圆CFD,
    ∴所得两个月型图案AGCE和DHCF的面积之和(图中阴影部分)=Rt△ACD的面积=××=1;
    故答案为1.
    本题考查了勾股定理,等腰直角三角形的性质,掌握定理是解题的关键.
    22、30.
    【解析】
    利用勾股逆定理推出∠C=90°,再利用三角形的面积公式,进行计算即可.
    【详解】
    解:∵,,
    又∵

    ∴∠C=90°

    故答案为:30
    本题考查了勾股逆定理以及三角形的面积公式,掌握勾股定理是解题的关键.
    23、2
    【解析】
    由题意,图中阴影部分的面积之和=×矩形AEOF的面积,根据比例系数k的几何意义即可解决问题;
    【详解】
    解:如图,∵反比例函数的解析式为,
    ∴矩形AEOF的面积为1.
    由题意,图中阴影部分的面积之和=×矩形AEOF的面积=2,
    故答案为2.
    本题考查反比例函数的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(x﹣y)(x+y);(2)﹣2<x≤1
    【解析】
    分析:(1)根据提公因式法,可分解因式;
    (2)根据解不等式,可得每个不等式的解集,根据不等式组的解集是不等式的公共部分,可得答案.
    解:(1)原式=(x﹣y)(x+y);
    (2)解不等式①1,得x>﹣2,
    解不等式②,得x≤1,
    把不等式①②在数轴上表示如图

    不等式组的解集是﹣2<x≤1.
    【点评】本题考查了因式分解,确定公因式(x﹣y)是解题关键.
    25、见解析
    【解析】
    证法一:连接AD,由三线合一可知AD平分∠BAC,根据角平分线的性质定理解答即可;证法二:根据“AAS”△BED≌△CFD即可.
    【详解】
    证法一:连接AD.
    ∵AB=AC,点D是BC边上的中点,
    ∴AD平分∠BAC(等腰三角形三线合一性质),
    ∵DE、DF分别垂直AB、AC于点E和F,
    ∴DE=DF(角平分线上的点到角两边的距离相等).
    证法二:在△ABC中,
    ∵AB=AC,
    ∴∠B=∠C(等边对等角).
    ∵点D是BC边上的中点,
    ∴BD=DC ,
    ∵DE、DF分别垂直AB、AC于点E和F,
    ∴∠BED=∠CFD=90°.
    在△BED和△CFD中
    ∵,
    ∴△BED≌△CFD(AAS),
    ∴DE=DF(全等三角形的对应边相等).
    本题考查了等腰三角形的性质,角平分线的性质,以及全等三角形的判定与性质,熟练掌握角平分线的性质以及全等三角形的判定与性质是解答本题的关键.
    26、(1);(2)1
    【解析】
    (1)根据折叠可得∠BFG=∠GFB′,再根据矩形的性质可得∠DFC=40°,从而∠BFG=70°即可得到结论;
    (2) 首先求出GD=9-=,由矩形的性质得出AD∥BC,BC=AD=9,由平行线的性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三角形的判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不变性,可知FB′=FB,由此即可解决问题.
    【详解】
    (1)根据折叠可得∠BFG=∠GFB′,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠DGF=∠BFG,∠ADF=∠DFC,

    ∴∠DFC=40°
    ∴∠BFD=140°
    ∴∠BFG=70°
    ∴∠DGF=70°;
    (2)∵AG=,AD=9,
    ∴GD=9-=,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,BC=AD=9,
    ∴∠DGF=∠BFG,
    由翻折不变性可知,∠BFG=∠DFG,
    ∴∠DFG=∠DGF,
    ∴DF=DG=,
    ∵CD=AB=4,∠C=90°,
    ∴在Rt△CDF中,由勾股定理得:,
    ∴BF=BC-CF=9-,
    由翻折不变性可知,FB=FB′=,
    ∴B′D=DF-FB′=-=1.
    本题是四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024年上海市民办新竹园中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年上海市民办新竹园中学数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市川沙中学数学九上开学预测试题【含答案】: 这是一份2024年上海市川沙中学数学九上开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】: 这是一份2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map