2024年四川省成都七中学育才学校九年级数学第一学期开学达标测试试题【含答案】
展开
这是一份2024年四川省成都七中学育才学校九年级数学第一学期开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,点D、E、F分别在BC、AB、CA上,且DE∥CA,DF∥BA,则下列三种说法:
(1)如果∠BAC=90°,那么四边形AEDF是矩形
(2)如果AD平分∠BAC,那么四边形AEDF是菱形
(3)如果AD⊥BC且AB=AC,那么四边形AEDF是正方形 .其中正确的有 ( )
A.3个B.2个C.1个D.0个
2、(4分)实数a,b在数轴上的位置如图所示,则化简﹣﹣的结果是( )
A.2bB.2aC.2(b﹣a)D.0
3、(4分)如图,在四边形中,,,,,.若点,分别是边,的中点,则的长是
A.B.C.2D.
4、(4分)如图,已知的顶点,,点在轴的正半轴上,按以下步骤作图:①以点为圆心、适当长度为半径作弧,分别交、于点,;②分别以点,为圆心、大于的长为半径作弧,两弧在内交于点;③作射线,交边于点.则点的坐标为( )
A.B.C.D.
5、(4分)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有( )
A.4个B.3个C.2个D.1个
6、(4分)下列各式中,能用公式法分解因式的是( )
①; ②; ③; ④; ⑤
A.2个B.3个C.4个D.5个
7、(4分)不等式:的解集是( )
A.B.C.D.
8、(4分)的值是( )
A.B.3C.±3D.9
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点B与点D重合,那么△DCF的周长是___cm.
10、(4分)一个有进水管与出水管的容器,从某时刻开始的4分内只进水不出水,在随后的若干分内既进水又出水,之后只有出水不进水,每分钟的进水量和出水量是两个常数,容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示,则进水速度是______升/分,出水速度是______升/分,的值为______.
11、(4分)如图,中,,点在上,,将线段沿方向平移得到线段,点分别落在边上,则的周长是 cm.
12、(4分)若关于的分式方程有一个根是x=3,则实数m的值是____;
13、(4分)若x1,x2是方程x2+x−1=0的两个根,则x12+x22=____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.请你经过观察、猜测线段FC、AE、EF之间是否存在一定的数量关系?若存在,证明你的结论;若不存在,请说明理由.
15、(8分)(1)计算:(-1)2019-|-4|+(3.14-π)0+()-1
(2)先化简,再求值:(1-)÷,再从-1,0,1和2中选一个你认为合适的数作为x的值代入求值.
16、(8分)在菱形中,点是边的中点,试分别在下列两个图形中按要求使用无刻度的直尺画图.
(1)在图1中,过点画的平行线;
(2)在图2中,连接,在上找一点,使点到点,的距离之和最短.
17、(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元
(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?
(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?
18、(10分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.
(1)求甲每小时加工多少个零件?
(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y= (k>0)的图象经过点B,E,则点E的坐标是____
20、(4分)已知中,,,直线经过点,分别过点,作直线的垂线,垂足分别为点,,若,,则线段的长为__________.
21、(4分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.
22、(4分)点 P(1,﹣3)关于原点对称的点的坐标是_____.
23、(4分)如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.
二、解答题(本大题共3个小题,共30分)
24、(8分)《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,其中的一个比赛环节“飞花令”增加了节目悬念.新学期开学,某班组织了甲、乙两组同学进行了“飞花令”的对抗赛,规定说对一首得1分,比赛中有一方说出9首就结束两个人对抗,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
甲组:9,4,6,5,9,6,7,6,8,6,9,5,7,6,9
乙组:4,6,7,6,7,9,7,5,8,7,6,7,9,6,8
(1)请你根据所给的两组数据,绘制统计图(表).
(2)把下面的表格补充完整.
(3)根据第(2)题表中数据,你会支持哪一组,并说明理由.
25、(10分)反比例函数的图象经过点点是直线上一个动点,如图所示,设点的横坐标为且满足过点分别作轴,轴,垂足分别为与双曲线分别交于两点,连结.
(1)求的值并结合图像求出的取值范围;
(2)在点运动过程中,求线段最短时点的坐标;
(3)将三角形沿着翻折,点的对应点得到四边形能否为菱形?若能,求出点坐标;若不能,说明理由;
(4)在点运动过程中使得求出此时的面积.
26、(12分)甲、乙两人在笔直的道路上相向而行,甲骑自行车从地到地,乙驾车从地到地,假设他们分别以不同的速度匀速行驶,甲先出6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离(千米)与甲出发的时间(分)之间的部分函数图象如图.
(1)两地相距______千米,甲的速度为______千米/分;
(2)直接写出点的坐标______,求线段所表示的与之间的函数表达式;
(3)当乙到达终点时,甲还需______分钟到达终点.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解:因为DE∥CA,DF∥BA,所以四边形AEDF是平行四边形,如果∠BAC=90°,那么四边形AEDF是矩形,所以(1)正确;
如果AD平分∠BAC,所以∠BAD=∠DAC,又DE∥CA,所以∠ADE=∠DAC,所以∠ADE=∠BAD,所以AE=ED,所以四边形AEDF是菱形,因此(2)正确;
如果AD⊥BC且AB=AC,根据三线合一可得AD平分∠BAC,所以四边形AEDF是菱形,所以(3)错误;所以正确的有2个,
故选B.
本题考查平行四边形的判定与性质;矩形的判定;菱形的判定;正方形的判定.
2、A
【解析】
由图可知-1<b<0<a<1,由进行化简.
【详解】
解:由图可知-1<b<0<a<1,原式=|a|-|b|-|a-b|=a+b-a+b=2b,
故选择A.
本题考查了含二次根式的式子的化简.
3、C
【解析】
连接,根据等腰三角形的性质、三角形内角和定理求出,根据勾股定理求出,根据三角形中位线定理计算即可.
【详解】
解:连接,
,,
,
,
,
点,分别是边,的中点,
,
故选:.
本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
4、B
【解析】
依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=,可得G(,3).
【详解】
解:如图:
∵▱AOBC的顶点O(0,0),A(-1,3),
∴AH=1,HO=3,
∴Rt△AOH中,AO=,
由题可得,OF平分∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=,
∴G(,3),
故选:B.
本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
5、B
【解析】
分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.
详解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,
∴∠E=∠B=60°,
∴△BEC是等边三角形,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠D=∠B=60°,
∴∠B=∠EAF=60°,
∴△EFA是等边三角形,
∵∠EFA=∠DFC=60°,∠D=∠B=60°,
∴△DFC是等边三角形,
∴图中等边三角形共有3个,
故选B.
点睛:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.
6、B
【解析】
根据各个多项式的特点,结合平方差公式及完全平方公式即可解答.
【详解】
①不能运用公式法分解因式;②能运用平方差公式分解因式;③不能运用公式法分解因式;④能运用完全平方公式分解因式;⑤能运用完全平方公式分解因式.
综上,能用公式法分解因式的有②④⑤,共3个.
故选B.
本题考查了运用公式法分解因式,熟练运用平方差公式及完全平方公式分解因式是解题的关键.
7、C
【解析】
利用不等式的基本性质:先移项,再系数化1,即可解得不等式;注意系数化1时不等号的方向改变.
【详解】
1-x>0,
解得x<1,
故选C.
本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.
8、B
【解析】
根据二次根式的性质解答.
【详解】
解:原式==3
二次根式:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,二次根式无意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
根据翻转变换的性质得到BF=DF,根据三角形的周长公式计算即可.
【详解】
由翻转变换的性质可知,BF=DF,
则△DCF的周长=DF+CF+CD=BF+CF+CD=BC+CD=1cm,
故答案为:1.
本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
10、5 3.75 1
【解析】
首先根据图象中的数据可求出进水管以及出水管的进出水速度,进而利用容器内的水量列出方程求出即可.
【详解】
解:由图象可得出:
进水速度为:20÷4=5(升/分钟),
出水速度为:5-(30-20)÷(12-4)=3.75(升/分钟),
(a-4)×(5-3.75)+20=(24-a)×3.75
解得:a=1.
故答案为:5;3.75;1
此题主要考查了一次函数的应用以及一元一次方程的应用等知识,利用图象得出进出水管的速度是解题关键.
11、13.
【解析】
试题分析:∵CD沿CB平移7cm至EF
考点:平移的性质;等腰三角形的性质.
12、-1.
【解析】
将x=3代入原方程,求解关于m的方程即可.
【详解】
解:将x=3代入原方程,得:
m=2-3
m=-1
故答案为-1.
本题考查了解分式方程中的已知解求参数问题,其关键在于将解代入方程,求关于参数的新的方程的解.
13、3
【解析】
先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.
【详解】
∵x1,x2是方程x2+x−1=0的两个根,
∴x1+x2=−=−=−1, x1•x2===−1,
∴x12+x22=(x1+x2)2−2x1⋅x2=(−1)2−2×(−1)=1+2=3.
故答案是:3.
本题考查根与系数的关系,解题的关键是掌握根与系数的关系.
三、解答题(本大题共5个小题,共48分)
14、AE=FC+EF,证明见解析.
【解析】
分析:用AAS证明△AED≌△DFC,根据全等三角形有对应边相等得,AE=DF,DE=CF.
详解:AE=FC+EF,证明如下:
∵四边形ABCD是正方形,∴AD=DC,∠ADC=90度.
又∵AE⊥DG,CF∥AE,
∴∠AED=∠DFC=90°,∴∠EAD+∠ADE=∠FDC+∠ADE=90°,
∴∠EAD=∠FDC.
∴△AED≌△DFC(AAS).∴AE=DF,ED=FC.
∵DF=DE+EF,
∴AE=FC+EF.
点睛:本题考查了正方形的性质和全等三角形的判定与性质,正方形既是轴对称图形又是中心对称图形,所以正方形中的线段之间的关系常用全等三角形来解决.
15、(1)-1;(2)x=-1时,原式=.
【解析】
(1)根据绝对值.零指数幂和负整数指数幂可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后从-1,0,1和2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.
【详解】
解:(1)(-1)2019-|-4|+(3.14-π)0+()-1
=(-1)-4+1+3
=-1;
(2)(1-)÷
=
=
=,
当x=-1时,原式=.
本题考查分式的化简求值.零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.
16、(1)详见解析;(2)详见解析.
【解析】
(1)连接,交于点,连接并延长交于点F,证出EO为△ABC的中位线即可得出结论;
(2)连接,连接交于点,连接,根据菱形的对称性可得:CP=AP,此时AP+PE= CP+PE=CE,根据两点之间线段最短,此时AP+PE最小.
【详解】
解:(1)连接,交于点,连接并延长交于点F,
∵四边形ABCD为菱形
∴点O为AC的中点
∵点E为AB的中点
∴EO为△ABC的中位线
∴EO∥BC
如下图所示:即为所求.
(2)连接,连接交于点,连接,
根据菱形的对称性可得:CP=AP,
∴此时AP+PE= CP+PE=CE,根据两点之间线段最短,此时AP+PE最小,且最小值即为CE的长
如图所示:点即为所求.
此题考查的是作图题,掌握菱形的性质、中位线的性质和两点之间线段最短是解决此题的关键.
17、 (1)A型设备最多购买5台;(2)A型设备至少要购买4台.
【解析】
(1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.
(2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.
【详解】
(1)设购买A型号的x台,购买B型号的为(10﹣x)台,
则:12x+10(10﹣x)≤110,
解得:x≤5,
答:A型设备最多购买5台;
(2)设购买A型号的a台,购买B型号的为(10﹣a)台,
可得:240a+180(10﹣a)≥2040,
解得:a≥4,
∴A型设备至少要购买4台.
本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.
18、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.
【解析】
(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,
(2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,
【详解】
解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,
根据题意,得:=,
解得:x=50,
经检验x=50是分式方程的解,
答:甲每小时加工50个零件,则乙每小时加工40个零件;
(2)设乙耽搁的时间为x小时,
根据题意,得:50x+(50+40)(12﹣x)≥1000,
解得:x≤2,
答:乙最多可以耽搁2小时.
本题主要考查分式方程和一元一次不等式的实际应用
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为( ,3a-3),根据5CD=3CB,可求出点E的坐标
【详解】
由题意可设:正方形OABC的边OA=a
∴OA= OC=AB= CB
∴点B的坐标为(a,a),即k=a
CF=2OC-3
∴CF=2a-3
∵OF=OC+CF=a+2a-3=3a-3
∴点E的纵坐标为3a-3
将3a-3代入反比例函数解析式y= 中,可得点E的横坐标为
∵四边形CDEF为矩形,
∴CD=EF=
5CD=3CB
=3a,可求得:a=
将a=,代入点E的坐标为( ,3a-3),
可得:E的坐标为
故答案为:
本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键
20、或
【解析】
分两种情况:①如图1所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE-CF即可;
②如图2所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE+CF即可.
【详解】
分两种情况:①如图1所示:
∵∠ACB=90°,
∴∠1+∠2=90°,
∵BF⊥CE,
∴∠BFC=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
∵AE⊥CE,
∴∠AEC=90°,
∴CE=,
在△BCF和△CAE中,
,
∴△BCF≌△CAE(AAS),
∴CF=AE=3,
∴EF=CE-CF=4-3=1;
②如图2所示:
∵∠ACB=90°,
∴∠1+∠2=90°,
∵BF⊥CF,
∴∠BFC=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
∵AE⊥CF,
∴∠AEC=90°,
∴CE=,
在△BCF和△CAE中,
,
∴△BCF≌△CAE(AAS),
∴CF=AE=3,
∴EF=CE+CF=4+3=1;
综上所述:线段EF的长为:1或1.
故答案为:1或1.
本题考查了全等三角形的判定与性质、勾股定理、互余两角的关系;本题有一定难度,需要进行分类讨论,作出图形才能求解.
21、
【解析】
试题解析:设BE与AC交于点P,连接BD,
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
即P在AC与BE的交点上时,PD+PE最小,为BE的长度;
∵正方形ABCD的边长为1,
∴AB=1.
又∵△ABE是等边三角形,
∴BE=AB=1.
故所求最小值为1.
考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.
22、(-1,3)
【解析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数可知:点P(1,-3)关于原点的对称点的坐标.
【详解】
解:∵关于原点对称的点,横坐标与纵坐标都互为相反数,
∴点P(1,-3)关于原点的对称点的坐标为(-1,3).
故答案为:(-1,3).
本题考查了关于原点对称的点,横坐标与纵坐标都互为相反数,难度较小.
23、AB=AD.
【解析】
由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.
【详解】
添加AB=AD,
∵OA=OC,OB=OD,
∴四边形ABCD为平行四边形,
∵AB=AD,
∴四边形ABCD是菱形,
故答案为:AB=AD.
此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)6.8;(3)答案不唯一,如:两组都支持,理由是:甲乙两组平均数一样.
【解析】
(1)根据题意可把数据整理成统计表;
(2)根据平均数和中位数的性质进行计算即可.
(3)根据比较平均数的大小,即可解答.
【详解】
(1)答案不唯一,如统计表
(2)甲组平均数: =6.8
乙组的中位数为:7.
(3)两组都支持,理由是:甲乙两组平均数一样.
此题考查统计表,平均数,中位数,解题关键在于看懂图中数据.
25、(1),,(2),(3)能,,
(4)
【解析】
(1)先把(1,3)代入求出k的值,再由两函数有交点求出m的值,根据函数图象即可得出结论;
(2)根据线段OC最短可知OC为∠AOB的平分线,对于,令,即可得出C点坐标,把代入中求出的值即可得出P点坐标;
(3)当OC=OD时,四边形O′COD为菱形,由对称性得到△AOC≌△BOD,即OA=OB,由此时P横纵坐标相等且在直线上即可得出结论.
(4)设,则,,根据PD=DB,构建方程求出,即可解决问题.
【详解】
解:(1)∴反比例函数(x>0,k≠0)的图象进过点(1,3),
∴把(1,3)代入,解得,
.
∵ ,
∴,
,
∴由图象得:;
(2)∵线段OC最短时,
∴OC为∠AOB的平分线,
∵对于,令,
∴,即C,
∴把代入中,得:,即P;
(3)四边形O′COD能为菱形,
∵当OC=OD时,四边形O′COD为菱形,
∴由对称性得到△AOC≌△BOD,即OA=OB,
∴此时P横纵坐标相等且在直线上,
即,解得:,即P.
(4)设B,则,
∵PD=DB,
∴,
解得:(舍弃),
∴,D,,,
本题属于反比例函数综合题,考查的是反比例函数的图像与性质,涉及到菱形的判定与性质、全等三角形的判定与性质等知识,在解答此题时要注意利用数形结合求解.
26、解:(1)24,;(2),;(3)50
【解析】
(1)由图像可得结论;
(2)根据题意可知F点时甲乙相遇,由此求出F点坐标,用待定系数法即得段所表示的与之间的函数表达式;
(3)先求出乙到达终点时,甲距离B地的路程,再除以速度即得时间.
【详解】
解:(1)由图像可得两地相距24千米,甲的速度为千米/分;
(2)设甲乙相遇时花费的时间为t分,根据题意得,解得
所以,
设线段表示的与之间的函数表达式为,根据题意得,
,
解得,
∴线段表示的与之间的函数表达式为;
(3)因为甲先出6分钟后,乙才出发,所以乙到达A地的时间为分,此时甲走了千米,距离B地千米,甲还需分钟到达终点B.
本题考查了一次函数及图像在路程问题中的应用,正确理解题意及函数图像是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
统计量
平均分(分)
方差(分2)
中位数(分)
合格率
优秀率
甲组
2.56
6
80.0%
26.7%
乙组
6.8
1.76
86.7%
13.3%
成绩(分)
4
5
6
7
8
9
甲组(人)
1
2
5
2
1
4
乙组(人)
1
1
4
5
2
2
统计量
平均分(分)
方差(分2)
中位数(分)
合格率
优秀率
甲组
6.8
2.56
6
80.0%
26.7%
乙组
6.8
1.76
7
86.7%
13.3%
相关试卷
这是一份2024年四川省成都市七中学育才学校九年级数学第一学期开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省成都市七中学育才学校九年级数学第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省成都七中育才学校数学九年级第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。