终身会员
搜索
    上传资料 赚现金
    2024年四川省成都市成华区九上数学开学质量跟踪监视试题【含答案】
    立即下载
    加入资料篮
    2024年四川省成都市成华区九上数学开学质量跟踪监视试题【含答案】01
    2024年四川省成都市成华区九上数学开学质量跟踪监视试题【含答案】02
    2024年四川省成都市成华区九上数学开学质量跟踪监视试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年四川省成都市成华区九上数学开学质量跟踪监视试题【含答案】

    展开
    这是一份2024年四川省成都市成华区九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图是一个直角三角形,它的未知边的长x等于
    A.13B.C.5D.
    2、(4分)已知两个直角三角形全等,其中一个直角三角形的面积为4,斜边为3,则另一个直角三角形斜边上的高为( )
    A.B.C.D.5
    3、(4分)反比例函数经过点(1,),则的值为( )
    A.3B.C.D.
    4、(4分)下列各数中,没有平方根的是( )
    A.65B.C.D.
    5、(4分)如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为( )
    A.24B.36C.72D.144
    6、(4分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是( )
    A.2B.﹣2C.1D.﹣1
    7、(4分)如果有意义,那么( )
    A.a≥B.a≤C.a≥﹣D.a
    8、(4分)如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若是一元二次方程的解,则代数式的值是_______
    10、(4分)化简,=______ ;= ________ ;= ______.
    11、(4分)已知m+3n的值为2,则﹣m﹣3n的值是__.
    12、(4分)直线与轴、轴的交点分别为、则这条直线的解析式为__________.
    13、(4分)= ▲ .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.
    (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
    (2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
    15、(8分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.
    (1)求证:△AEF∽△ABC:
    (2)求正方形EFMN的边长.
    16、(8分)某中学开学初到商场购买、两种品牌的足球,购买种品牌的足球50个,种品牌的足球25个,共花费4500元,已知购买一个种品牌的足球比购买一个种品牌的足球少30元.
    (1)求购买一个种品牌、一个种品牌的足球各需多少钱.
    (2)学校为了响应“足球进校园”的号召,决定再次购进、两种品牌足球共50个,正好赶上商场对商品价格进行调整,品牌的足球售价上涨4元,品牌足球按原售价的9折出售,如果学校第二次购买足球的总费用不超过第一次花费的,且保证品牌足球不少于23个,则学校有几种购买方案?
    (3)求出学校在第二次购买活动中最多需要多少钱?
    17、(10分)如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.
    (1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是 .
    (2)直接写出线段AC的长为 ,AD的长为 ,BD的长为 .
    (3)直接写出△ABD为 三角形,四边形ADBC面积是 .
    18、(10分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.
    (1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是 ;
    (2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;
    (3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若有增根,则m=______
    20、(4分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=9,则EF的长为______.
    21、(4分)如图,矩形ABCD中,,,把矩形ABCD绕点A顺时针旋转,当点D落在射线CB上的点P处时,那么线段DP的长度等于_________.
    22、(4分)如图,已知中,,点为的中点,在线段上取点,使与相似,则的长为 ______________.
    23、(4分)等边三角形的边长是4,则高AD_________ (结果精确到0.1)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,直线与坐标轴交于,过线段的中点作的垂线,交轴于点.
    (1)填空:线段,,的数量关系是______________________;
    (2)求直线的解析式.
    25、(10分)(1)计算
    (2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.
    解方程
    解:方程两边乘,得第一步
    解得 第二步
    检验:当时,.
    所以,原分式方程的解是 第三步
    小刚的解法从第 步开始出现错误,原分式方程正确的解应是 .
    26、(12分)李师傅去年开了一家商店.今年1月份开始盈利,2月份盈利3000元,4月份的盈利达到4320元,且从2月到4月,每月盈利的平均增长率都相同.
    (1)求每月盈利的平均增长率;
    (2)按照这个平均增长率,预计5月份这家商店的盈利可达到多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由勾股定理得:22+32=x2.
    【详解】
    由勾股定理得:22+32=x2.
    所以,x=
    故选:B
    本题考核知识点:勾股定理. 解题关键点:熟记勾股定理.
    2、C
    【解析】
    先求出这个三角形斜边上的高,再根据全等三角形对应边上的高相等解答即可.
    【详解】
    解:设面积为4的直角三角形斜边上的高为h,则×3h=4,
    ∴h=,
    ∵两个直角三角形全等,
    ∴另一个直角三角形斜边上的高也为.
    故选:C.
    本题主要考查全等三角形对应边上的高相等的性质和三角形的面积公式,较为简单.
    3、B
    【解析】
    此题只需将点的坐标代入反比例函数解析式即可确定k的值.
    【详解】
    把已知点的坐标代入解析式可得,k=1×(-1)=-1.
    故选:B.
    本题主要考查了用待定系数法求反比例函数的解析式,.
    4、C
    【解析】
    根据平方都是非负数,可得负数没有平方根.
    【详解】
    A、B、D都是正数,故都有平方根;
    C是负数,故C没有平方根;
    故选:C.
    考查平方根,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.
    5、C
    【解析】
    根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,EO=OF,再求出BO=OD,证明四边形ABCD是菱形,根据菱形的四条边都相等求出边长AE,根据菱形的对角线互相平分求出OE,然后利用勾股定理列式求出AO,再求出AC,最后根据四边形的面积等于对角线乘积的一半列式计算即可得解.
    【详解】
    解:如图,连接AC交BD于点O,
    ∵四边形AECF是菱形,
    ∴AC⊥BD,AO=OC,EO=OF,
    又∵点E、F为线段BD的两个三等分点,
    ∴BE=FD,
    ∴BO=OD,
    ∵AO=OC,
    ∴四边形ABCD为平行四边形,
    ∵AC⊥BD,
    ∴四边形ABCD为菱形;
    ∵四边形AECF为菱形,且周长为20,
    ∴AE=5,
    ∵BD=24,点E、F为线段BD的两个三等分点,
    ∴EF=8,OE=EF=×8=4,
    由勾股定理得,AO===3,
    ∴AC=2AO=2×3=6,
    ∴S四边形ABCD=BD•AC=×24×6=72;
    故选:C.
    本题考查了菱形的判定与性质,主要利用了菱形的对角线互相垂直平分的性质,勾股定理以及利用菱形对角线求面积的方法,熟记菱形的性质与判定方法是解题的关键.
    6、D
    【解析】
    试题分析:将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.
    解:将点(m,n)代入函数y=2x+1得,
    n=2m+1,
    整理得,2m﹣n=﹣1.
    故选D.
    7、C
    【解析】
    被开方数为非负数,列不等式求解即可.
    【详解】
    根据题意得:,解得.
    故选:.
    本题考查二次根式有意义的条件,二次根式的被开方数是非负数.
    8、B
    【解析】
    根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
    【详解】
    根据勾股定理,AB=,
    BC=,
    AC=,
    ∵AC2+BC2=AB2=26,
    ∴△ABC是直角三角形,
    ∵点D为AB的中点,
    ∴CD=AB=.
    故选B.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-3
    【解析】
    将代入到中即可求得的值.
    【详解】
    解:是一元二次方程的一个根,


    故答案为:.
    此题主要考查了一元二次方程的解(根的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
    10、5 5 3
    【解析】
    直接利用二次根式的性质化简求出即可.
    【详解】
    =5;=5;=3.
    故答案为:5.;5;3.
    此题考查二次根式的化简,解题关键在于掌握二次根式的性质.
    11、.
    【解析】
    首先将原式变形,进而把已知代入,再利用二次根式的性质化简进而计算得出答案.
    【详解】
    解:∵m+3n=,
    ∴﹣m﹣3n
    =
    =
    =,
    故答案为:.
    本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和整体代入思想的运用.
    12、y=1x+1.
    【解析】
    把(-1,0)、(0,1)代入y=kx+b得到 ,然后解方程组可.
    【详解】
    解:根据题意得

    解得,
    所以直线的解析式为y=1x+1.
    故答案为y=1x+1.
    本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.
    13、1.
    【解析】
    针对零指数幂,二次根式化简和运算等考点分别进行计算,然后根据实数的运算法则求得计算结果:.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)20分钟.
    【解析】
    (1)材料加热时,设y=ax+15(a≠0),
    由题意得60=5a+15,
    解得a=9,
    则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).
    停止加热时,设y=(k≠0),
    由题意得60=,
    解得k=300,
    则停止加热进行操作时y与x的函数关系式为y=(x≥5);
    (2)把y=15代入y=,得x=20,
    因此从开始加热到停止操作,共经历了20分钟.
    答:从开始加热到停止操作,共经历了20分钟.
    15、(1)详见解析;(2)正方形的边长为8cm.
    【解析】
    (1)根据两角对应相等的两个三角形相似即可证明;
    (2)利用相似三角形的性质,构建方程即可解决问题;
    【详解】
    (1)证明:∵四边形EFMN是正方形,
    ∴EF∥BC,
    ∴∠AEF=∠B,∠AFE=∠C,
    ∴△AEF∽△ABC.
    (2)解:设正方形EFMN的边长为xcm.
    ∴AP=AD-x=12-x(cm)
    ∵△AEF∽△ABC, AD⊥BC,
    ∴,
    ∴,
    ∴x=8,
    ∴正方形的边长为8cm.
    本题考查相似三角形的判定和性质、正方形的性质等知识,解题的关键是熟练掌握基本知识.
    16、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,详见解析;(3)最多需要3150元.
    【解析】
    (1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及购买一个种品牌的足球比购买一个种品牌的足球少30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;
    (2)设第二次购买A种足球m个,则购买B种足球(50−m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;
    (3)分析第二次购买时,A、B两种足球的单价,即可得出哪种方案花钱最多,求出花费最大值即可得出结论.
    【详解】
    解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,
    依题意得: ,解得:,
    答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;
    (2)设第二次购买A种足球m个,则购买B种足球(50−m)个,
    依题意得:,
    解得:25≤m≤1.
    故这次学校购买足球有三种方案:
    方案一:购买A种足球25个,B种足球25个;
    方案二:购买A种足球26个,B种足球24个;
    方案三:购买A种足球1个,B种足球23个.
    (3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),
    ∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多,
    ∴25×54+25×72=3150(元).
    答:学校在第二次购买活动中最多需要3150元.
    本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)根据数量关系找出关于x、y的二元一次方程组;(2)根据数量关系找出关于m的一元一次不等式组;(3)确定花费最多的方案.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键.
    17、(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为,AD的长为2,BD的长为;(3)△ABD为 直角三角形,四边形ADBC面积是1.
    【解析】
    (1)根据题意画出图形,进一步得到D点的坐标;
    (2)根据勾股定理可求线段AC的长,AD的长,BD的长;
    (3)根据勾股定理的逆定理可得△ABD为直角三角形,再根据矩形的面积公式即可求解.
    【详解】
    (1)如图所示:D点的坐标是(0,﹣4);
    (2)线段AC的长为 AD的长为BD的长为
    (3)∵

    ∴△ABD为 直角三角形,四边形ADBC面积是
    考查了勾股定理,勾股定理的逆定理,矩形的面积,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    18、(1)EB=FD,(2)EB=FD,证明见解析;(3)不变,等于60°.
    【解析】
    (1)EB=FD,利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△AFD≌△ABE,由全等三角形的性质即可得到EB=FD;
    (2)当四边形ABCD为矩形时,EB和FD仍旧相等,证明的思路同(1);
    (3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不发生变化,是一定值,为60°.
    【详解】
    解:(1)EB=FD,
    理由如下:
    ∵四边形ABCD为正方形,
    ∴AB=AD,
    ∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,
    ∴AF=AE,∠FAB=∠EAD=60°,
    ∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
    ∠BAE=∠BAD+∠EAD=90°+60°=150°,
    ∴∠FAD=∠BAE,
    在△AFD和△ABE中,

    ∴△AFD≌△ABE,
    ∴EB=FD;
    (2)EB=FD.
    证:∵△AFB为等边三角形
    ∴AF=AB,∠FAB=60°
    ∵△ADE为等边三角形,
    ∴AD=AE,∠EAD=60°
    ∴∠FAB+∠BAD=∠EAD+∠BAD,
    即∠FAD=∠BAE
    ∴△FAD≌△BAE
    ∴EB=FD;
    (3)解:
    同(2)易证:△FAD≌△BAE,
    ∴∠AEB=∠ADF,
    设∠AEB为x°,则∠ADF也为x°
    于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,
    ∴∠EGD=180°﹣∠BED﹣∠EDF
    =180°﹣(60﹣x)°﹣(60+x)°
    =60°.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.
    【详解】
    方程两边都乘(x-3),得
    x-1(x-3)=1-m,
    ∵方程有增根,
    ∴最简公分母x-3=0,即增根是x=3,
    把x=3代入整式方程,得m=-1.
    故答案是:-1.
    解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    20、1
    【解析】
    利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长
    【详解】
    解:∵∠AFB=90°,D为AB的中点,
    ∴DF=AB=1.5,
    ∵DE为△ABC的中位线,
    ∴DE=BC=4.5,
    ∴EF=DE-DF=1,
    故答案为:1.
    本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
    21、
    【解析】
    【分析】画图,分两种情况:点P在B的右侧或左侧.根据旋转和矩形性质,运用勾股定理,分别求出BP和PC,便可求出PD.
    【详解】(1)如图,当P在B的右侧时,由旋转和矩形性质得:
    AP=AD=5,AB=CD=3,
    在直角三角形ABP中,BP=,
    所以,PC=BC-BP=5-4=1,
    在直角三角形PDC中,PD=,
    (2)如图,当点P在B的左侧时,由旋转和矩形性质得:
    AP=AD=5,AB=CD=3,
    在直角三角形APB中,PB=,
    所以,PC=BC+PB=5+4=9,
    在在直角三角形PDC中,PD=,
    所以,PD的长度为
    故答案为
    【点睛】本题考核知识点:矩形,旋转,勾股定理. 解题关键点:由旋转和矩形性质得到边边相等,由勾股定理求边长.
    22、或
    【解析】
    根据题意与相似,可分为两种情况,△AMN∽△ABC或者△AMN∽△ACB,两种情况分别列出比例式求解即可
    【详解】
    ∵M为AB中点,∴AM=
    当△AMN∽△ABC,有,即,解得MN=3
    当△AMN∽△ACB,有,即,解得MN=
    故填3或
    本题主要考查相似三角形的性质,解题关键在于要对题目进行分情况讨论
    23、3.1
    【解析】
    根据等边三角形的性质及勾股定理进行计算即可.
    【详解】
    如图,三角形ABC为等边三角形,AD⊥BC,AB=4,
    ∵三角形ABC为等边三角形,AD⊥BC,
    ∴BD=CD=2,
    在中,.
    故答案为:3.1.
    本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)
    【解析】
    (1)连接BC,根据线段垂直平分线性质得出BC=AC,然后根据勾股定理可得,进而得出;
    (2)根据一次函数解析式求出点A坐标,从而得出OA=6.设OC=x,在Rt△BOC中利用勾股定理建立方程求出OC的长,进而得出CA长度,然后利用三角形面积性质求出点M到x轴的距离,从而进一步得出M的坐标,之后根据M、C两点坐标求解析式即可.
    【详解】
    (1)如图所示,连接BC,
    ∵MC⊥AB,且M为AB中点,
    ∴BC=AC,
    ∵△BOC为直角三角形,
    ∴,
    ∴;
    (2)∵直线与坐标轴交于两点,
    ∴OA=6,OB=4,
    设OC=x,则BC=,
    ∴,
    解得,
    ∴△BCA面积==,
    设M点到x轴距离为n,
    则:,
    ∴n=.
    ∴M坐标为(3,2),
    ∵C坐标为(,0)
    设CM解析式为:,
    则:,,
    ∴,,
    ∴CM解析式为:.
    本题主要考查了一次函数与勾股定理的综合运用,熟练掌握相关概念是解题关键.
    25、(1);(2)一 ,
    【解析】
    (1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.
    【详解】
    解:(1)
    =
    =
    =
    =
    (2)小刚的解法从第一步开始出现错误
    解方程
    解:方程两边乘,得
    解得
    检验:当时,.
    所以,原分式方程的解是
    故答案为:一 ,
    本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.
    26、(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为5184元.
    【解析】
    (1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
    (2)5月份盈利=4月份盈利×增长率.
    【详解】
    (1)设该商店的每月盈利的平均增长率为x,根据题意得:
    3000(1+x)2=4320,
    解得:x1=20%,x2=-2.2(舍去).
    (2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:
    4320×(1+20%)=5184(元).
    答:(1)该商店的每月盈利的平均增长率为20%.
    (2)5月份盈利为5184元.
    此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.
    题号





    总分
    得分
    相关试卷

    2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省南京市九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年江苏省南京市九上数学开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年贵州省从江县九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年贵州省从江县九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map