2024年四川省成都市青羊区九上数学开学监测模拟试题【含答案】
展开
这是一份2024年四川省成都市青羊区九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于( )
A.B.C.D.
2、(4分)方程的二次项系数、一次项系数、常数项分别为( )
A.,,B.,,C.,,D.,,
3、(4分)如图所示,四边形OABC是矩形,△ADE是等腰直角三角形,∠ADE=90°,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=(x>0)的图象上.△ADE的面积为,且AB=DE,则k值为( )
A.18B.C.D.16
4、(4分)顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )
A.矩形B.菱形C.正方形D.平行四边形
5、(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是( )
A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b
6、(4分)下列说法错误的是( )
A.一组对边平行且相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的菱形是正方形
D.对角线相等的平行四边形是矩形
7、(4分)一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有( )
A.0个B.1个C.2个D.3个
8、(4分)如图,在梯形ABCD中,AD//BC,E为BC上一点,DE//AB,AD的长为2,BC的长为4,则CE的长为( ).
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)我校八年一班甲、乙两名同学10次投篮命中的平均数均为7,方差=1.45,=2.3,教练想从中选一名成绩较稳定的同学加入校篮球队,那么应选_____.
10、(4分)因式分解:x2+6x=_____.
11、(4分)如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.
12、(4分)如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为_____.
13、(4分)函数的定义域是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系xOy中,点A(0,4),B(1,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+1.
(1)当直线l经过D点时,求点D的坐标及k的值;
(2)当直线L与正方形有两个交点时,直接写出k的取值范围.
15、(8分)解方程:=-.
16、(8分)已知等腰三角形的周长是,底边是腰长的函数。
(1)写出这个函数的关系式;
(2)求出自变量的取值范围;
(3)当为等边三角形时,求的面积。
17、(10分)图①、图②、图③都是由8个大小完全相同的矩形拼成无重叠、无缝隙的图形,每个小矩形的顶点叫做格点,线段的端点都在格点上. 仅用无刻度的直尺分别在下列方框内完成作图,保留作图痕迹.
(1)在图①中,作线段的一条垂线,点、在格点上.
(2)在图②、图③中,以为边,另外两个顶点在格点上,各画一个平行四边形,所画的两个平行四边形不完全重合.
18、(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若,则xy的值等于_______.
20、(4分)如果关于x的一次函数y=mx+(4m﹣2)的图象经过第一、三、四象限,那么m的取值范围是_____.
21、(4分)如图, 和都是等腰直角三角形, ,的顶点在的斜边上,若,则____.
22、(4分)如图,正方形ABOC的面积为4,反比例函数的图象过点A,则k=_______.
23、(4分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)化简:;(2)先化简,再求值:,选一个你喜欢的数求值.
25、(10分)如图,矩形ABCD中,点E在BC上,AE=CE,试分别在下列两个图中按要求使用无刻度的直尺画图.
(1)在图1中,画出∠DAE的平分线;
(2)在图2中,画出∠AEC的平分线.
26、(12分)解不等式组,并写出不等式组的整数解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD= AB.
【详解】
解:∵∠ACB=90°,D为AB的中点,
∴CD= AB= ×6=3cm.
故选:C.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
2、D
【解析】
首先把方程化为一般式,然后可得二次项系数、一次项系数、常数项.
【详解】
2x2-6x=9可变形为2x2-6x-9=0,
二次项系数为2、一次项系数为-6、常数项为-9,
故选:D.
此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;b叫做一次项系数;c叫做常数项.
3、B
【解析】
设B(m,5),则E(m+3,3),因为B、E在y=上,则有5m=3m+9=k,由此即可解决问题;
【详解】
解:∵△ADE是等腰直角三角形,面积为,
∴AD=DE=3,
∵AB=DE,
∴AB=5,设B(m,5),则E(m+3,3),
∵B、E在y=上,
则有5m=3m+9=k
∴m=,
∴k=5m=.
故选B.
本题考查反比例函数系数k的几何意义,等腰直角三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
4、C
【解析】
根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.
【详解】
解:、、、分别是、、、的中点,
,,EH=FG=BD,EF=HG=AC,
四边形是平行四边形,
,,
,,
四边形是正方形,
故选:C.
本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.
5、D
【解析】
由图象对称轴为直线x=-,则-=-,得a=b,
A中,由图象开口向上,得a>0,则b=a>0,由抛物线与y轴交于负半轴,则c
相关试卷
这是一份2024年四川省成都市天府新区九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省成都市青羊区树德实验中学九上数学开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省成都市青羊区部分学校九上数学开学学业质量监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。