2024年四川省乐山外国语学校九年级数学第一学期开学综合测试试题【含答案】
展开
这是一份2024年四川省乐山外国语学校九年级数学第一学期开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各数中,能使不等式成立的是( )
A.6B.5C.4D.2
2、(4分)下列因式分解错误的是( )
A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1)B.x2+2x+1=(x+1)2
C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x+y)(x﹣y)
3、(4分)某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是( ).
A.50,20B.50,30C.50,50D.1,50
4、(4分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是( )
A.2B.﹣2C.1D.﹣1
5、(4分)如图,菱形中,交于点,于点,连接,若,则的度数是( )
A.35°B.30°C.25°D.20°
6、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9B.6C.4D.3
7、(4分)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.12≤b≤13B.12≤b≤15C.13≤b≤16D.15≤b≤16
8、(4分)若线段,且点C是AB的黄金分割点,则BC等于( )
A.B.C.或D.或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线y=2x+1向下平移3个单位长度后所得直线的表达式是 ______.
10、(4分)如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.
11、(4分)如图,在Rt△ABC中,∠B=90°,AB=,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为____.
12、(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为________.
13、(4分)如图,直线与轴、轴分别交于,两点,是的中点,是上一点,四边形是菱形,则的面积为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:()0﹣|﹣2|﹣.
15、(8分)如图1,□ABCD在平面直角坐标系xOy中,已知点、、、,点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.
(1)求点D的坐标和的值;
(2)如图2,当直线EF交x轴于点,且时,求点P的坐标;
(3)如图3,当直线EF交x轴于点时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.
图1 图2 图3
16、(8分)因为一次函数与的图象关于轴对称,所以我们定义:函数与互为“镜子”函数.
(1)请直接写出函数的“镜子”函数:________.
(2)如图,一对“镜子”函数与的图象交于点,分别与轴交于两点,且AO=BO,△ABC的面积为,求这对“镜子”函数的解析式.
17、(10分)已知E、F分别是平行四边形ABCD的BC和DA边上的点,且CE=AF,问:DE与FB是否平行?说明理由.
18、(10分)解方程:x2- 4x= 1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,已知∠BAC=90°,点D、E、F分别是三边的中点,若AF=3cm,则DE=_____cm.
20、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.
21、(4分)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.
22、(4分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是____cm.
23、(4分)(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).
(1)求直线AB和反比例函数的解析式.
(2)求∠ACO的度数.
25、(10分)某工厂从外地购得A种原料16吨,B种原料13吨,现计划租用甲、乙两种货车6辆将购得的原料一次性运回工厂,已知一辆甲种货车可装2吨A种原料和3吨B种原料;一辆乙种货车可装3吨A种原料和2吨B种原料,设安排甲种货车x辆.
(1)如何安排甲、乙两种货车?写出所有可行方案;
(2)若甲种货车的运费是每辆500元,乙种货车的运费是每辆350元,设总运费为W元,求W(元)与x(辆)之间的函数关系式;
(3)在(2)的前提下,当x为何值时,总运费最少,此时总运费是多少元?
26、(12分)如图,在6×6的网格中,每个小正方形的边长为1,请按要求画出格点四边形(四个顶点都在格点上的四边形叫格点四边形).
(1)在图1中,画出一个非特殊的平行四边形,使其周长为整数.
(2)在图2中,画出一个特殊平行四边形,使其面积为6且对角线交点在格点上.
注:图1,图2在答题纸上.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
将A、B、C、D选项逐个代入中计算出结果,即可作出判断.
【详解】
解:当时,=1>0,
当x=5时,=0.5>0,
当x=4时,=0,
当x=2时,=-1<0,
由此可知,可以使不等式成立.
故选D.
本题考查了一元一次不等式的解的概念,代入求值是关键.
2、A
【解析】
A、原式=(x﹣2)(2x﹣1),错误;
B、原式=(x+1)2,正确;
C、原式=xy(x﹣y),正确;
D、原式=(x+y)(x﹣y),正确,
故选A.
3、C
【解析】
根据众数和中位数的定义进行计算即可.
【详解】
众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;
将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.
故选:C.
本题考查众数和中位数,明确众数和中位数的概念是关键.
4、D
【解析】
试题分析:将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.
解:将点(m,n)代入函数y=2x+1得,
n=2m+1,
整理得,2m﹣n=﹣1.
故选D.
5、C
【解析】
根据直角三角形的斜边中线性质可得,根据菱形性质可得,从而得到度数,再依据即可.
【详解】
解:∵四边形是菱形,,
∵O为BD中点,.
,
∴在中,,
.
.
故选:.
本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.
6、D
【解析】
已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.
【详解】
故选D.
本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.
7、D
【解析】
此题涉及的知识点是解直角三角形,根据题目中底面半径是5,高是12,可以算出另一边,吸管在罐外部分剩余3,不同放置就可以算出总长
【详解】
底面半径是5,高是12,则吸管最长放在罐里的长度为13,加上罐外的3,总长为16;如果吸管竖直放置,则罐里最短长为12,加上罐外3总长为15,所以吸管总长范围为:
故选D
此题重点考察学生对直角三角形的解的应用,勾股定理是解题的关键
8、D
【解析】
分AC<BC、AC>BC两种情况,根据黄金比值计算即可.
【详解】
解:当AC<BC时,BC= AB=,
当AC>BC时,BC==,
故选:D.
本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=1x-1
【解析】
直线y=1x+1向下平移3个单位长度,根据函数的平移规则“上加下减”,可得平移后所得直线的解析式为y=1x+1﹣3=1x﹣1.
考点:一次函数图象与几何变换.
10、或1
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示,
连结AC,
在Rt△ABC中,AB=1,BC=12,
∴AC==13,
∵将ΔABE沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,
,
由勾股定理得:,
解得:;
②当点B′落在AD边上时,如图2所示,
此时ABEB′为正方形,∴BE=AB=1,
综上所述,BE的长为或1,
故答案为:或1.
本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.
11、
【解析】
连接DE、CD,先证明四边形DEFC为平行四边形,再求出CD的长,即为EF的长.
【详解】
连接DE、CD,
∵D、E分别是AB、AC的中点,CF=BC
∴DE=BC=CF,DE∥BF,
∴四边形DEFC为平行四边形,
∵BD=AB=,BC=3,AB⊥BF,
∴EF=CD=
此题主要考查四边形的线段求解,解题的关键是根据题意作出辅助线,求证平行四边形,再进行求解.
12、1
【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.
【详解】
解:∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=5,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE=3,
∴EC=BC-BE=5-3=1,
故答案为:1.
本题考查了角平分线、平行四边形的性质及等边对等角,根据已知得出∠BAE=∠AEB是解决问题的关键.
13、8.
【解析】
已知直线y=x+8与x轴、y轴分别交于A,B两点, 可求得点A、B的坐标分别为:(8 ,0)、(0,8);又因 C是OB的中点, 可得点C(0,4),所以菱形的边长为4,根据菱形的性质可得DE=4=DC,设点D(m,m+8),则点E(m,m+4),由两点间的距离公式可得CD2=m2+(m+8﹣4)2=16, 解方程求得m=2, 即可得点E(2,2), 再根据S△OAE= ×OA×yE即可求得的面积.
【详解】
∵直线y=x+8与x轴、y轴分别交于A,B两点,
∴当x=0时,y=8;当y=0时,x=8,
∴点A、B的坐标分别为:(8 ,0)、(0,8),
∵C是OB的中点,
∴点C(0,4),
∴菱形的边长为4,则DE=4=DC,
设点D(m,m+8),则点E(m,m+4),
则CD2=m2+(m+8﹣4)2=16,
解得:m=2,
故点E(2,2),
S△OAE= ×OA×yE=×8×2=8 ,
故答案为8.
本题是一次函数与几何图形的综合题,正确求得点E的坐标是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、-1-
【解析】
根据零指数幂、实数的绝对值和二次根式的性质分别计算各项,再合并即可.
【详解】
解:原式=1+-2-2=-1-
本题考查了实数的混合运算,熟知实数的混合运算法则是求解的关键.
15、(1)(2,−2),7;(2)点P的坐标为(,−)或(−,);(3)点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
【解析】
(1)根据平行线的性质可求点D的坐标,根据重心的定义可得S四边形BEFC=S▱ABCD从而求解;
(2)分两种情况:①点P在AC左边,②点P在AC右边,进行讨论即可求解;
(3)先作出图形,再根据矩形的性质即可求解.
【详解】
解:(1)∵▱ABCD在平面直角坐标系xOy中,点A(−1,0)、B(0,4)、C(3,2),
∴点D的坐标为(2,−2),
∴S▱ABCD=6×4−×1×4−×3×2−×1×4−×3×2=14,
∵点G是对角线AC的中点,
∴S四边形BEFC=S▱ABCD=7;
(2)∵点G是对角线AC的中点,
∴G(1,1),
设直线GH的解析式为y=kx+b,
则,
解得,
∴直线GH的解析式为y=−x+;
①点P在AC右边,
S△ACH=×6×2=6,
∵S△PAC=S四边形BEFC,
1+4×=,
当x=时,y=−×+=−,
∴P(,−);
②点P在AC左边,
由中点坐标公式可得P(−,);
综上所述,点P的坐标为(,−)或(−,);
(3)如图,
设直线GK的解析式为y=kx+b,则,
解得,
则直线GK的解析式为y=−x+,
CP⊥AP时,点P的坐标为(3,0)或(−1,2);
CP⊥AC时,直线AC的解析式为y=x+,
直线CP的解析式为y=−2x+8,
故点P的坐标为(,−);
AP⊥AC时,
同理可得点P的坐标为(−,);
综上所述,点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
本题考查四边形的综合题、矩形的性质、三角形和四边形的面积等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用方程的思想思考问题,属于中考压轴题.
16、 (1)y=-3x-2;(2);.
【解析】
(1)根据“镜子”函数的定义解答即可;
(2)根据“镜子”函数的定义可得与的图象关于轴对称,即可得出AO=BO=CO,设OA=OB =OC=x,根据△ABC的面积为列方程求出x的值,即可得点A、B、C的坐标,利用待定系数法求出k、b的值即可得答案.
【详解】
(1)∵函数与互为“镜子”函数.
∴函数的“镜子”函数是,
故答案为:
(2)∵函数与是一对“镜子”函数,
∴一次函数与的图象关于轴对称,
∴BO=CO,
∴AO=BO=CO,
设,根据题意可得
解得
∴,
将B、A的坐标分别代入中得,
解得:
∴其函数解析式为,
∴其“镜子”函数解析式为.
∴这对“镜子”函数的解析式为和.
本题考查待定系数法求一次函数解析式,根据关于y轴对称的点的坐标特征得出OA=OB=OC是解题关键.
17、DE∥FB
【解析】
试题分析:DE与FB平行,根据已知条件可证明DFBE是平行四边形,由平行四边形的性质可得DE∥FB.
试题解析:
DE∥FB.
因为 在□ABCD中,
AD∥BC (平行四边形的对边互相平行).
且 AD=BC (平行四边形的对边相等),
所以 DF∥BE,
又 CE=AF,DE=AD﹣AF,BE=BC﹣CE,
所以 DF=BE,
所以 DFBE是平行四边形,(有一组对边平行且相等的四边形是平行四边形),
所以 DE∥FB.(平行四边形的对边相等).
18、x1=2+,x2=2-
【解析】
试题分析:方程两边都加上一次项系数一半的平方,进行配方,两边直接开平方即可求得方程的解.
试题解析:x2-4x=1
x2-4x+4=1+4
(x-2)2=5
x-2=
即:x1=2+,x2=2-
考点:解一元二次方程---配方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
∵在直角三角形中,斜边上的中线等于斜边的一半,
∴BC=2AF=6cm,
又∵DE是△ABC的中位线,
∴DE=BC=3cm.
故答案为3.
本题考查直角三角形斜边上的中线和三角形的中位线. 在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,且等于第三边的一半.
20、1
【解析】
根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.
【详解】
根据折叠的性质知:BP=BC,
∴BN=BC=BP,
∵∠BNP=90°,
∴∠BPN=1°,
故答案为:1.
本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.
21、35°
【解析】
根据折叠的性质可得∠ECB=∠ECF,CB=CF,根据菱形的性质可得CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,求出等腰三角形DCF的顶角∠DCF,即可求出∠ECF的度数
【详解】
解:在菱形ABCD中,CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,
根据折叠可得:∠ECB=∠ECF,CB=CF,
∴CF=CD
∴∠DCF=180°-70°-70°=40°,
∴∠ECF=(∠BCD-∠DCF)=35°.
故答案为35°.
本题考查图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
22、18
【解析】
解:∵OA=OB,∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=OB=18cm
本题考查等边三角形的判定与性质,难度不大.
23、P(5,5)或(4,5)或(8,5)
【解析】
试题解析:由题意,当△ODP是腰长为4的等腰三角形时,有三种情况:
(5)如图所示,PD=OD=4,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=4-5=4,
∴此时点P坐标为(4,5);
(4)如图所示,OP=OD=4.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△POE中,由勾股定理得: OE=,
∴此时点P坐标为(5,5);
(5)如图所示,PD=OD=4,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△PDE中,由勾股定理得: DE=,
∴OE=OD+DE=4+5=8,
∴此时点P坐标为(8,5).
综上所述,点P的坐标为:(4,5)或(5,5)或(8,5).
考点:5.矩形的性质;4.坐标与图形性质;5.等腰三角形的性质;5.勾股定理.
二、解答题(本大题共3个小题,共30分)
24、(1)y=x+ ,y=﹣;(2)∠ACO=30°;
【解析】
(1)根据A、B两点坐标求得一次函数解析式,再求得D点的具体坐标,从而求得反比例函数的解析式.
(2)联立函数解析式求得C点坐标,过C点作CH⊥x轴于H,证明为等腰三角形,根据特殊直角三角形求得的度数,从而求得的度数.
【详解】
解:(1)设直线AB的解析式为: ,
把A(0,),B(2,0)分别代入,
得,,
解得 =,b=.
∴直线AB的解析式为:y=x+;
∵点D(1,a)在直线AB上,
∴a=+=,即D点坐标为(1,),
又∵D点(1,)在反比例函数的图象上,
∴k=1×=﹣,
∴反比例函数的解析式为:y=﹣;
(2)由,解得或,
∴C点坐标为(3,﹣),过C点作CH⊥x轴于H,如图,
∵OH=3,CH=,
∴OC=,而OA=,
∴OA=OC,
∴∠OAC=∠OCA.
又∵OB=2,
∴AB=,
在Rt△AOB中,
∴∠OAB=30°,
∴∠ACO=30°
本题考查了一次函数与反比例函数的交点问题,解题的关键是熟练掌握待定系数法.
25、 (1)有两种可行方案,方案一:安排甲种货车1辆,乙种货车5辆,方案二:安排甲种货车2辆,乙种货车4辆;
(2) x为1时,总运费最少,此时总运费是2250元.
【解析】
【分析】(1)依题意得,解不等式组即可;
(2)直接根据数量关系可列W=500x+350(6−x)=150x+2100;
(3)结合(1)和(2),当x最小时,运费最少.
【详解】(1)由题意可得,
,
解得,1⩽x⩽2,
∴有两种可行方案,
方案一:安排甲种货车1辆,乙种货车5辆,
方案二:安排甲种货车2辆,乙种货车4辆;
(2)由题意可得,
W=500x+350(6−x)=150x+2100,
即W(元)与x(辆)之间的函数关系式是W=150x+2100;
(3)由(2)知,
W=150x+2100,
∵1⩽x⩽2,
∴当x=1时,W取得最小值,此时W=2250,
答:x为1时,总运费最少,此时总运费是2250元.
【点睛】此题考核知识点:列不等式组解应用题;求函数的最小值.解题的关键是:根据题意列出不等式组,并求出解集;分析函数解析式中函数值与自变量之间的关系,从而轻易确定函数最小值.
26、(1)详见解析;(2)详见解析.
【解析】
(1)利用勾股定理得出符合题意的四边形;
(2)利用平行四边形的面积求法得出符合题意的答案.
【详解】
(1)如图1,平行四边形ABCD即为所求
图1
(2)如图2,菱形ABCD即为所求
图2
此题主要考查了应用设计与作图以及勾股定理确定线段长度,正确借助网格得出是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年四川省成都实验外国语学校九年级数学第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年四川省成都嘉祥外国语学校数学九年级第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年上海外国语大秀洲外国语学校数学九年级第一学期开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。