2024年四川省眉山市丹棱县数学九上开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若点在反比例函数的图象上则的值是( )
A.B.C.1. 5D.6
2、(4分)已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是( )
A.k≠2B.k>2C.0<k<2D.0≤k<2
3、(4分)已知|a+1|+=0,则b﹣1=( )
A.﹣1B.﹣2C.0D.1
4、(4分)在平行四边形ABCD中,∠A+∠C=160°,则∠B的度数是( )
A.130°B.120°C.100°D.90°
5、(4分)已知一次函数,若y随着x的增大而增大,且它的图象与y轴交于负半轴,则直线的大致图象是( )
A.B.C.D.
6、(4分)若,则下列各式中,错误的是( )
A.B.C.D.
7、(4分)八年级甲、乙、丙三个班的学生人数相同,上期期末体育成绩的平均分相同,三个班上期期末体育成绩的方差分别是:,,,教体育的杜老师更喜欢上体育水平接近的学生,若从这三个班选一个班上课,杜老师更喜欢上课的班是( )
A.甲班B.乙班C.丙班D.上哪个班都一样
8、(4分)下列图形中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)等边三角形的边长是4,则高AD_________ (结果精确到0.1)
10、(4分)如图,在正方形ABCD中,E是边CD上的点.若△ABE的面积为4.5,DE=1,则BE的长为________.
11、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为_____.
12、(4分)如图,□ABCD的对角线AC,BD相交于点O,若AO+BO=5,则AC+BD的长是________.
13、(4分)在平面直角坐标系中有两点和点.则这两点之间的距离是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知x=2+,求代数式(7-4)x2+(2-)x+的值.
15、(8分)如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.
16、(8分)解方程:(1);(2).
17、(10分)解不等式组并求出其整数解
18、(10分) “立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评分标准如下:注:成绩栏里的每个范围,含最低值,不含最高值.
某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:
1.96 2.38 2.56 2.04 2.34 2.17 2.60 2.26 1.87 2.32
请完成下列问题:
(1)求这10名男生立定跳远成绩的极差和平均数;
(2)求这10名男生立定跳远得分的中位数和众数;
(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简得_____________.
20、(4分)一个多边形的内角和等于 1800°,它是______边形.
21、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
22、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
23、(4分)如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,AB=10,BC=6,AC=8.
(1)求证:△ABC是直角三角形;
(2)若D是AC的中点,求BD的长.(结果保留根号)
25、(10分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
若购买者一次性付清所有房款,开发商有两种优惠方案:
(方案一)降价8%,另外每套房赠送a元装修基金;
(方案二)降价10%,没有其他赠送.
(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;
(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
26、(12分)某商品的进价为每件 30 元,现在的售价为每件 40 元,每星期可卖出 150 件.市场调查 发现:如果每件的售价每涨 1 元(售价每件不能高于 45 元),那么每星期少卖 10 件,设每 件涨价 x 元( x 为非负整数),每星期的销量为 y 件.
(1)写出 y 与 x 的关系式;
(2)要使每星期的利润为 1560 元,从有利于消费者的角度出发,售价应定为多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
将A的坐标代入反比例函数进行计算,可得答案.
【详解】
将A(﹣2,3)代入反比例函数,得k=﹣2×3=﹣6,故选:A.
本题考查反比例函数,解题的关键是将点A代入反比例函数.
2、D
【解析】
直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
当经过第一、二、四象限时, ,解得0
3、B
【解析】
根据非负数的性质求出a、b的值,然后计算即可.
【详解】
解:∵|a+1|+=0,
∴a+1=0,a-b=0,
解得:a=b=-1,
∴b-1=-1-1=-1.
故选:B.
本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a、b的值是解决此题的关键.
4、C
【解析】
分析:直接利用平行四边形的对角相等,邻角互补即可得出答案.
详解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°.
∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.
故选C.
点睛:本题主要考查了平行四边形的性质,正确把握平行四边形各角之间的关系是解题的关键.
5、D
【解析】
一次函数y=(1-k)x+k中y随x的增大而增大,且与y轴负半轴相交,即可确定k的符号,即可求解.
【详解】
解:∵一次函数y=(1-k)x+k中y随x的增大而增大,
∴1-k>0,
∴k<1
∵一次函数y=(1-k)x+k与y轴负半轴相交,
∴k<0,
∴综合上述得:k<0,
∴直线y=kx+k的大致图象如图:
故选:D.
此题主要考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
6、A
【解析】
根据不等式性质分析即可解答.
【详解】
解:A、两边都乘以-1,不等号的方向改变,选项变形错误,故A符合题意;
B、两边都减3,不等号的方向不变,故B不符合题意;
C、两边都乘以-2,不等号的方向改变,故C不符合题意;
D、两边都乘以,不等号的方向不变,故D不符合题意;
故选:A.
主要考查了不等式的基本性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
7、B
【解析】
先比较三个班方差的大小,然后根据方差的意义进行判断.
【详解】
解:∵S2甲=6.4,S2乙=5.6,S2丙=7.1,
∴S2乙<S2甲<S2丙,
∴乙班成绩最稳定,杜老师更喜欢上课的班是乙班.
故选:B.
本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
8、B
【解析】
首先根据把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,分别找出各选项所给图形中是轴对称图形的选项,进而排除不是轴对称
图形的选项;
然后再分析得到的是轴对称图形的选项,根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,找出它们当中是中心对称图形的选项即可
【详解】
A 是中心对称图形,不是轴对称图形,不符合题意
B.既是中心对称图形又是轴对称图形,符合题意;
C.既不是中心对称图形,也不是轴对称图形,不符合题意
D是轴对称图形,不是中心对称图形,不符合题意
故选B
此题主要考查中心对称图形和轴对称图形,根据定义对各选项进行分析判断是解决问题的关键;
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.1
【解析】
根据等边三角形的性质及勾股定理进行计算即可.
【详解】
如图,三角形ABC为等边三角形,AD⊥BC,AB=4,
∵三角形ABC为等边三角形,AD⊥BC,
∴BD=CD=2,
在中,.
故答案为:3.1.
本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.
10、
【解析】
由S正方形ABCD=2S△ABE=9,先求出正方形的边长,再在Rt△BCE中,利用勾股定理即可解决问题.
【详解】
解:∵四边形ABCD是正方形,
∴AB=CD=BC,∠C=90°,
∵S正方形ABCD=2S△ABE=9,
∴AB=CD=BC=3,
∵DE=1,
∴EC=2,
在Rt△BCE中,∵∠C=90°,BC=3,EC=2,
∴BE=
故答案为:.
本题考查正方形的性质、勾股定理等知识,解题的关键是S正方形ABCD=2S△ABE的应用,记住这个结论,属于中考常考题型.
11、1
【解析】
试题解析:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,
∴CD2=AD•BD=8×2,
则CD=1.
12、1;
【解析】
根据平行四边形的性质可知:AO=OC,BO=OD,从而求得AC+BC的长.
【详解】
∵四边形ABCD是平行四边形
∴OC=AO,OB=OD
∵AO=BO=2
∴OC+OD=2
∴AC+BD=AO+BO+CO+DO=1
故答案为:1.
本题考查平行四边形的性质,解题关键是得出OC+OD=2.
13、
【解析】
先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.
【详解】
如图,
∵A(5,0)和B(0,4),
∴OA=5,OB=4,
∴AB=,即这两点之间的距离是.
故答案为.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、2+
【解析】
把已知数据代入原式,根据平方差公式计算即可.
【详解】
解:当时,
原式=
=
=49-48+4-3+
=2+.
15、见解析
【解析】
根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,即AE∥CF,
又∵AE=CF,
∴四边形AECF为平行四边形,
∴AF=CE.
本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
16、(1);(2)或.
【解析】
(1)用求根根式法求解即可;
(2)先移项,然后用因式分解法求解即可.
【详解】
解:(1)∵、、,
∴,
则;
(2)∵,
∴,
则,
∴或,
解得:或.
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
17、;其整数解为大于的所有整数.
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式,得:,
解不等式,得:,
则不等式的解集为,
不等式的整数解为大于的所有整数.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
18、(1)0.73,2.25;(2)2,10;(3)1.
【解析】
(1)根据极差、平均数的定义求解;
(2)对照表格得到10名男生立定跳远得分,然后根据中位线、众数的概念解答;
(3)用样本根据总体.
【详解】
解:(1)10名男生“立定跳远”成绩的极差是:2.60-1.87=0.73(米)
10名男生“立定跳远”成绩的平均数是:
(1.26+2.38+2.56+2.04+2.34+2.17+2.60+2.26+1.87+2.32)=2.25(米);
(2)抽查的10名男生的立定跳远得分依次是:
7,10,10,8,10,8,10,2,6,2.
∴10名男生立定跳远得分的中位数是2分,众数是10分;
(3)∵抽查的10名男生中得分2分(含2分)以上有6人,
∴有480×=1;
∴估计该校480名男生中得到优秀的人数是1人.
本题考查了极差,平均数,中位线,众数的概念,极差是一组数据中最大的数与最小的数的差.众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
利用二次根式的性质进行化简即可.
【详解】
解:.
故答案为.
点睛:本题考查了二次根式的化简.熟练应用二次根式的性质对二次根式进行化简是解题的关键.
20、十二
【解析】
根据多边形的内角和公式列方程求解即可;
【详解】
设这个多边形是n边形,
由题意得,(n-2)•180°=1800°,
解得n=12;
故答案为十二
本题考查了多边形的内角和,关键是掌握多边形的内角和公式.
21、1
【解析】
根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.
【详解】
解:这个调查的样本是1名考生的数学成绩,故样本容量是1.
故答案为1.
本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.
22、
【解析】
证明△ADD′是等腰直角三角形即可解决问题.
【详解】
解:由旋转可知:△ABD≌△ACD′,
∴∠BAD=∠CAD′,AD=AD′=2,
∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
∴DD′=,
故答案为:.
本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
23、18
【解析】
利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24 ,求得CD=9,即可求得BC的长.
【详解】
∵AB=AC,AD平分∠BAC,
∴BD=CD,AD⊥BC,
∵E为AC中点,
∴CE=AC==7.5,DE=AB==7.5,
∵CD+DE+CE=24,
∴CD=24-7.5-7.5=9,
∴BC=18,
故答案为18 .
本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)2.
【解析】
分析:(1)直接根据勾股定理逆定理判断即可;
(2)先由D是AC的中点求出CD的长,然后利用勾股定理求BD的长即可.
详解:(1)∵AB2=100, BC2=36, AC2=64,
∴AB2=BC2+AC2,
∴△ABC是直角三角形.
(2)CD=4,在Rt△BCD中,
BD=.
点睛:本题考查了勾股定理及其逆定理的应用,勾股定理是:直角三角形两条直角边的平方和等于斜边的平方;勾股定理逆定理是:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
25、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.
【解析】
解:(1)当1≤x≤8时,每平方米的售价应为:
y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)
当9≤x≤23时,每平方米的售价应为:
y=4000+(x﹣8)×50=50x+3600(元/平方米).
∴
(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),
按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),
按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),
当W1>W2时,即485760﹣a>475200,
解得:0<a<10560,
当W1<W2时,即485760﹣a<475200,
解得:a>10560,
∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.
本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
26、(1)y=150-10x(0≤x≤5且x为整数);(2)售价应定为42元.
【解析】
(1)根据每周销量=150-10×每件涨价钱数,即可得出y与x的关系式;
(2)根据每周的总利润=每件商品的利润×每周的销量,可得关于x的一元二次方程,解之即得x的值,取其较小者代入40+x即可得出结论.
【详解】
解:(1)由题意,得y=150-10x(0≤x≤5且x为整数);
(2)设每星期的利润为w元, 则w=(40+x-30)y =(x+10)(150-10x)=-10x2+50x+1500,
要使每星期的利润为1560元,
则w=1560,即-10x2+50x+1500=1560.
解这个方程得:x1=2,x2=3.
∴当x=2或3时,可使每星期的利润为1560元,
从有利于消费者的角度出发,应取x=2,此时40+x=42,即售价应定为42元.
本题是一元二次方程的应用问题中较为典型的类型,解题的思路一般是先表示出销量,再表示出总利润,最后得出方程.需要注意的是,在列方程时,要认真审题,加强分析,注意题意中的“一涨一少”,明确涨的是什么,少的是什么.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(米)
…
1.80~1.86
1.86~1.94
1.94~2.02
2.02~2.18
2.18~2.34
2.34~
得分(分)
…
5
6
7
8
9
10
2024年山西省临汾市数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024年山西省临汾市数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建泉州安溪恒兴中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024年福建泉州安溪恒兴中学九上数学开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。