开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年四川省眉山市东坡区东坡区东坡中学九年级数学第一学期开学学业水平测试模拟试题【含答案】

    2024年四川省眉山市东坡区东坡区东坡中学九年级数学第一学期开学学业水平测试模拟试题【含答案】第1页
    2024年四川省眉山市东坡区东坡区东坡中学九年级数学第一学期开学学业水平测试模拟试题【含答案】第2页
    2024年四川省眉山市东坡区东坡区东坡中学九年级数学第一学期开学学业水平测试模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年四川省眉山市东坡区东坡区东坡中学九年级数学第一学期开学学业水平测试模拟试题【含答案】

    展开

    这是一份2024年四川省眉山市东坡区东坡区东坡中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为( )
    A.1B.1.5C.2D.2.5
    2、(4分)某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
    根据上表中的信息判断,下列结论中错误的是( )
    A.该班一共有42名同学
    B.该班学生这次考试成绩的众数是8
    C.该班学生这次考试成绩的平均数是27
    D.该班学生这次考试成绩的中位数是27分
    3、(4分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
    A.B.C.D.
    4、(4分)如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是( )
    A.B.C.D.5
    5、(4分)下列变形是因式分解的是( )
    A.x(x+1)=x2+xB.m2n+2n=n(m+2)
    C.x2+x+1=x(x+1)+1D.x2+2x﹣3=(x﹣1)(x+3)
    6、(4分)如图,在△ABC中,D,E,F分别是AB,BC,AC边的中点.如果添加一个条件,使四边形ADEF是菱形,则添加的条件为( )
    A.AB=ACB.AC=BCC.∠A=90°D.∠A=60°
    7、(4分)已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为( )
    A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)
    8、(4分)学校举行演讲比赛,共有15名同学进入决赛,比赛将评出金奖1名,银奖3名,铜奖4名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的( )
    A.平均数B.中位数C.众数D.方差
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在矩形中, 与相交于点,,那么的度数为,__________.
    10、(4分)观察下列各式
    ==2;==3;==4;==5……请你找出其中规律,并将第n(n≥1)个等式写出来____________。
    11、(4分)已知正n边形的一个外角是45°,则n=____________
    12、(4分)若代数式有意义,则x的取值范围是______。
    13、(4分)一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是______尺.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形网格中,△TAB 的顶点坐标分别为 T(1,1)、A(2,3)、B(4,2).
    (1)以点 T(1,1)为位似中心,在位似中心的 同侧将△TAB 放大为原来的 3 倍,放大 后点 A、B 的对应点分别为 A'、B',画出△TA'B':
    (2)写出点 A'、B'的坐标:A'( )、B'( );
    (3)在(1)中,若 C(a,b)为线段 AB 上任一 点,则变化后点 C 的对应点 C'的坐标为 ( ).
    15、(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
    (1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
    (2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.
    16、(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:
    (1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1, 并写出点C1的坐标;
    ②作出△ABC关于原点O对称的△A2B2C2, 并写出点C2的坐标;
    (2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.
    17、(10分)某电冰箱厂每个月的产量都比上个月増长的百分数相同.己知该厂今年月份的电冰箱产量为万台,月份比月份多生产了万台.
    (1)求该厂今年产量的月平均増长率为多少?
    (2)预计月份的产量为多少万台?
    18、(10分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.
    (1)正方体的棱长为 cm;
    (2)求线段AB对应的函数解析式,并写出自变量x的取值范围;
    (3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算: .
    20、(4分)若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.
    21、(4分)在平面直角坐标系中,点P(–2,–3)在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    22、(4分)若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA=_____cm时,四边形ABCD是平行四边形.
    23、(4分)如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,BD为平行四边形ABCD的对角线,按要求完成下列各题.
    (1)用直尺和圆规作出对角线BD的垂直平分线交AD于点E,交BC于点F,垂足为O,(保留作图痕迹,不要求写作法)
    (2)在(1)的基础上,连接BE和DF,求证:四边形BFDE是菱形.
    25、(10分)如图,一次函数y= x+6的图象与x轴、y轴分别交于A、B两点,点C与点A关于y轴对称.动点P、Q分别在线段AC、AB上(点P与点A、C不重合),且满足∠BPQ=∠BAO.
    (1)求点A、 B的坐标及线段BC的长度;
    (2)当点P在什么位置时,△APQ≌△CBP,说明理由;
    (3)当△PQB为等腰三角形时,求点P的坐标.
    26、(12分)已知一次函数的图象经过A(-2,-3),B(1,3)两点.
    (1)求这个一次函数的解析式;
    (2)试判断点P(-1,1)是否在这个一次函数的图象上;
    (3)求此函数与x轴、y轴围成的三角形的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    作DH⊥BC于H,得到△DEB是等腰直角三角形,设DH=BH=EH=a,证明△CDH∽△CAB,得到,求得AB=,CE=2a,根据得到,利用阴影面积=求出答案.
    【详解】
    作DH⊥BC于H,
    ∵∠ABC=90°,BD是△ABC的角平分线,
    ∴∠ABD=∠DBC=45°,
    ∴△DEB是等腰直角三角形,
    设DH=BH=EH=a,
    ∵DH∥AB,
    ∴△CDH∽△CAB,
    ∴,
    ∵AD=1,
    ∴AC=4,
    ∴,
    ∴AB=,CE=2a,
    ∵,
    ∴,
    ∴=1,
    ∴,
    ∴图中阴影部分的面积=
    =
    =
    =
    故选:B.
    此题考查等腰直角三角形的判定及性质,相似三角形的判定及性质,求不规则图形的面积,根据阴影图形的特点确定求面积的方法进而进行计算是解答问题的关键.
    2、B
    【解析】
    根据众数,中位数,平均数的定义解答.
    【详解】
    解:该班共有6+5+5+8+7+7+4=42(人),
    成绩27分的有8人,人数最多,众数为27;
    该班学生这次考试成绩的平均数是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,
    该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,
    故选:B.
    本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
    3、D
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A.不是中心对称图形,本选项错误;
    B.不是中心对称图形,本选项错误;
    C.不是中心对称图形,本选项错误;
    D.是中心对称图形,本选项正确.
    故选D.
    本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    4、D
    【解析】
    先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.
    【详解】
    解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,
    设AC=b,BC=a,AB=c,
    ∵△ABC是直角三角形,且∠BAC=90度,
    ∴c2+b2=a2,
    ∴c2+b2=a2,
    又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,
    ∴S1+S2=S3,
    ∵S3=8,S2=3,
    ∴S1=S3−S2=8−3=5,
    故选:D.
    本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.
    5、D
    【解析】
    根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
    【详解】
    A、是整式的乘法,故A错误;
    B、等式不成立,故B错误;
    C、没把一个多项式转化成几个整式乘积的形式,故C错误;
    D、把一个多项式转化成几个整式乘积的形式,故D正确;
    故选:D.
    此题考查因式分解的意义,解题关键在于掌握其定义
    6、A
    【解析】
    由题意利用中位线性质和平行四边形判定四边形ADEF是平行四边形,再寻找条件使得相邻两边相等即可判断选项.
    【详解】
    解:∵在△ABC中,D,E,F分别是AB,BC,AC边的中点,
    ∴DE和EF为中位线,EF//AB,DE//AC,
    ∴四边形ADEF是平行四边形,
    当AB=AC,则有AD=AF,
    证得四边形ADEF是菱形,故AB=AC满足条件.
    故选:A.
    本题考查菱形的性质与证明,熟练掌握中位线性质和平行四边形的判定是解题的关键.
    7、A
    【解析】
    ∵线段CD是由线段AB平移得到的,
    而点A(−1,4)的对应点为C(4,7),
    ∴由A平移到C点的横坐标增加5,纵坐标增加3,
    则点B(−4,−1)的对应点D的坐标为(1,2).
    故选A
    8、B
    【解析】
    根据进入决赛的15名学生所得分数互不相同,所以这15名学生所得分数的中位数即是获奖的学生中的最低分,所以某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,据此解答即可.
    【详解】
    解:∵进入决赛的15名学生所得分数互不相同,共有1+3+4=8个奖项,
    ∴这15名学生所得分数的中位数即是获奖的学生中的最低分,
    ∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,
    如果这名学生的分数大于或等于中位数,则他能获奖,
    如果这名学生的分数小于中位数,则他不能获奖.
    故选B.
    此题主要考查了统计量的选择,要熟练掌握,解答此题的关键是要明确:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,属于基础题,难度不大.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据矩形的性质可得∠OAD=∠ODA,再根据三角形的外角性质可得∠AOB=∠DAO+∠ADO=46°,从而可求∠OAD度数.
    【详解】
    ∵四边形是矩形
    ∴OA=OC=OB=OD,
    ∴∠DAO=∠ADO,
    ∵∠AOB=∠DAO+∠ADO=46°,
    ∴=∠AOB=×46°=23°
    即=23°.
    故答案为:23°.
    此题考查矩形的性质,解决矩形中角度问题一般会运用矩形对角线分成的四个小三角形的等腰三角形的性质.
    10、
    【解析】
    根据给定例子,找规律,即可得到答案.
    【详解】
    由==2;==3;==4;==5,得=,故本题答案是:.
    本题主要考查利用算术平方根找规律,学生们需要认真分析例子,探索规律即可.
    11、8
    【解析】
    解:∵多边形的外角和为360°,正多边形的一个外角45°,
    ∴多边形得到边数360÷45=8,所以是八边形.
    故答案为8
    12、x>5
    【解析】
    若代数式 有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.
    【详解】
    若代数式有意义,
    则≠0,得出x≠5.
    根据根式的性质知中被开方数x-5≥0
    则x≥5,
    由于x≠5,则可得出x>5,
    答案为x>5.
    本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.
    13、
    【解析】
    设折断处离地面的高度是x尺,根据勾股定理即可列出方程进行求解.
    【详解】
    设折断处离地面的高度是x尺,根据勾股定理得x2+32=(10-x)2,
    解得x=
    故折断处离地面的高度是尺.
    此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(1)A′(4,7),B′(10,4)(3)(3a-1,3b-1)
    【解析】
    (1)根据题目的叙述,在位似中心的同侧将△TAB放大为原来的3倍,得到对应点坐标,正确地作出图形即可,
    (1)根据图象确定各点的坐标即可.
    (3)根据(1)中变换的规律,即可写出变化后点C的对应点C′的坐标.
    【详解】
    解:(1)如图所示:
    (1)点A′,B′的坐标分别为:A′(4,7),B′(10,4);
    故答案为:(4,7);(10,4);
    (3)变化后点C的对应点C′的坐标为:C′(3a-1,3b-1)
    故答案为:3a-1,3b-1.
    本题考查了位似变换作图的问题,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.
    15、(1)丙,乙,甲;(2)甲被录用.
    【解析】
    (1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;
    (2)先算出甲、乙、丙的总分,根据公司的规定先排除丙,再根据甲的总分最高,即可得出甲被录用.
    【详解】
    (1)甲=(85+80+75)÷3=80(分),乙=(80+90+73)÷3=81(分),丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;
    (2)甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),丙的总分是:83×60%+79×30%+90×10%=82.5(分).
    ∵公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴丙排除,∴甲的总分最高,甲被录用.
    本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.
    16、 (1)作图见解析,C1的坐标C1(-1,2), C2的坐标C2(-3,-2);(2)y=-x.
    【解析】
    分析:(1)①利用正方形网格特征和平移的性质写出A、B、C对应点A1、B1、C1的坐标,然后在平面直角坐标系中描点连线即可得到△A1B1C1.
    ②根据关于原点对称的点的特征得出A2、B2、C2的坐标,然后在平面直角坐标系中描点连线即可得到△A2B2C2.
    (2)根据A与A3的点的特征得出直线l解析式.
    详解:(1)如图所示, C1的坐标C1(-1,2), C2的坐标C2(-3,-2)
    (2)解:∵A(2,4),A3(-4,-2),
    ∴直线l的函数解析式:y=-x.
    点睛:本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.
    17、(1)20%;(2)8.64万台.
    【解析】
    试题分析:
    (1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2
    ,解方程即可得到所求答案;
    (2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.
    试题解析:
    (1)设该厂今年产量的月平均增长率是x,根据题意得:
    5(1+x)2﹣5(1+x)=1.2
    解得:x=﹣1.2(舍去),x=0.2=20%.
    答:该厂今年的产量的月增长率为20%;
    (2)7月份的产量为:5(1+20%)3=8.64(万台).
    答:预计7月份的产量为8.64万台.
    18、(1)10;(2)y=x+(12≤x≤28);(3)4 s.
    【解析】
    (1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;
    (2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x的取值范围;
    (3)利用一次函数图象结合水面高度的变化得出t的值.
    【详解】
    (1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,
    所以正方体的棱长为10cm;
    故答案为10cm;
    (2)设线段AB对应的函数解析式为:y=kx+b,
    ∵图象过A(12,0),B(28,20),
    ∴,
    解得:,
    ∴线段AB对应的解析式为:(12≤x≤28);
    (3)∵28﹣12=16(cm),
    ∴没有立方体时,水面上升10cm,所用时间为:16秒,
    ∵前12秒由立方体的存在,导致水面上升速度加快了4秒,
    ∴将正方体铁块取出,经过4秒恰好将此水槽注满.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    解:.
    故答案为1
    20、
    【解析】
    设这个一次函数的表达式y=-1x+b,把代入即可.
    【详解】
    设这个一次函数的表达式y=-1x+b,把代入,得
    -4+b=-1,
    ∴b=3,
    ∴.
    故答案为:.
    本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了待定系数法.
    21、C
    【解析】
    应先判断出点P的横纵坐标的符号,进而判断其所在的象限.
    【详解】
    解:∵点P的横坐标-2<0,纵坐标为-3<0,
    ∴点P(-2,-3)在第三象限.
    故选:C.
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    22、1
    【解析】
    根据OB=OD,当OA=OC时,四边形ABCD是平行四边形,即可得出答案.
    【详解】
    由题意得:当OA=1时,OC=14﹣1=1=OA,
    ∵OB=OD,
    ∴四边形ABCD是平行四边形,
    故答案为:1.
    本题考查平行四边形的判定,解题关键是熟练掌握平行四边形的判定定理:对角线互相平分的四边形是平行四边形,难度一般.
    23、AB=BC(答案不唯一).
    【解析】
    根据正方形的判定添加条件即可.
    【详解】
    解:添加的条件可以是AB=BC.理由如下:
    ∵四边形ABCD是矩形,AB=BC,
    ∴四边形ABCD是正方形.
    故答案为AB=BC(答案不唯一).
    本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
    二、解答题(本大题共3个小题,共30分)
    24、(1)作图见解析;
    (2)证明见解析.
    【解析】
    试题分析:(1)、根据线段中垂线的作法作出中垂线,得出答案;(2)、根据平行四边形的性质得出△DOE和△BOF全等,从而根据对角线互相平分的四边形为平行四边形得出四边形BFDE为平行四边形,然后结合对角线互相垂直得出菱形.
    试题解析:(1)、作图
    (2)在□ABCD中,AD∥BC ∴∠ADB=∠CBD 又∵ EF垂直平分BD
    ∴BO=DO ∠EOD=∠FOB=90° ∴△DOE≌△BOF (ASA) ∴EO=FO
    ∴ 四边形BFDE 是平行四边形 又∵ EF⊥BD ∴□BFDE为菱形
    25、A(-4,0),B(0,3),BC=1;(1,0);(1,0)或(,0).
    【解析】
    试题分析:根据函数解析式和勾股定理求出点A和点B的坐标以及BC的长度;根据全等的性质得出点P的坐标;本题分PQ=PB,BQ=BP乙BQ=PQ三种情况分别进行计算得出点P的坐标.
    试题解析:(1)点A坐标是(-4,0),点B的坐标(0,3),BC=1.
    (2)点P在(1,0)时
    (3)i)当PQ=PB时,△APQ≌△CBP, 由(1)知此时点P(1,0)
    ii)当BQ=BP时,∠BQP=∠BPQ ∠BQP是△APQ的外角,∠BQP>∠BAP,又∠BPQ=∠BAO
    ∴这种情况不可能
    iii)当BQ=PQ时,∠QBP=∠QPB 又∠BPQ=∠BAO,∴∠QBP=∠BAO,则AP=4+x,BP=
    ∴ 4+x=,解得x=,此时点P的坐标为:(,0)
    考点:一次函数的应用
    26、 (1) y=2x+1;(2)不在;(3)0.25.
    【解析】
    (1)用待定系数法求解函数解析式;
    (2)将点P坐标代入即可判断;
    (3)求出函数与x轴、y轴的交点坐标,后根据三角形的面积公式即可求解.
    【详解】
    解答:
    (1)设一次函数的表达式为y=kx+b,
    则-3=-2k+b、3=k+b,解得:k=2,b=1.
    ∴函数的解析式为:y=2x+1.
    (2)将点P(-1,1)代入函数解析式,1≠-2+1,
    ∴点P不在这个一次函数的图象上.
    (3)当x=0,y=1,当y=0,x=,
    此函数与x轴、y轴围成的三角形的面积为:
    题号





    总分
    得分
    批阅人
    成绩(分)
    24
    25
    26
    27
    28
    29
    30
    人数(人)
    6
    5
    5
    8
    7
    7
    4
    笔 试
    面 试
    体 能

    85
    80
    75

    80
    90
    73

    83
    79
    90

    相关试卷

    四川省眉山市东坡区东坡区东坡中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案:

    这是一份四川省眉山市东坡区东坡区东坡中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,△OAB∽△OCD,OA等内容,欢迎下载使用。

    四川省眉山市东坡区东坡中学2023-2024学年数学八上期末学业质量监测模拟试题含答案:

    这是一份四川省眉山市东坡区东坡中学2023-2024学年数学八上期末学业质量监测模拟试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,﹣2的绝对值是,函数的自变量x的取值范围是等内容,欢迎下载使用。

    2023-2024学年四川省眉山市东坡区东坡区东坡中学数学八上期末学业水平测试试题含答案:

    这是一份2023-2024学年四川省眉山市东坡区东坡区东坡中学数学八上期末学业水平测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知且,那么等于,如图,已知点A,下列图形中,不具有稳定性的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map