2024年天津市和平区双菱中学数学九年级第一学期开学学业水平测试试题【含答案】
展开
这是一份2024年天津市和平区双菱中学数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点向右平移2个单位得到对应点,则点的坐标是( )
A.B.C.D.
2、(4分)设,a在两个相邻整数之间,则这两个整数是( )
A.1和2B.2和3C.3和4D.4和5
3、(4分)直线的截距是 ( )
A.—3B.—2C.2D.3
4、(4分)设a= ,b= ,c=,则a,b,c的大小关系是( )
A.b>c>a B.b>a>c C.c>a>b D.a>c>b
5、(4分)如图,,两地被池塘隔开,小明想测出、间的距离;先在外选一点,然后找出,的中点,,并测量的长为,由此他得到了、间的距离为( )
A.B.C.D.
6、(4分)下列命题是假命题的是( )
A.直角三角形中,30°角所对的直角边等于斜边的一半
B.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等
C.平行四边形是中心对称图形
D.对角线相等的四边形是平行四边形
7、(4分)若关于的一元二次方程的一个根是0,则的值是( )
A.1B.-1C.1或-1D.
8、(4分)有位同学参加歌咏比赛,所得的分数互不相同,取得分前位同学进入决赛,小明知道自己的分数后,要判断自己能否进入决赛,他只需知道这位同学得分的( )
A.平均数B.中位数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对于反比例函数,当时,的取值范围是__________.
10、(4分)已知5+的整数部分为a,5-的小数部分为b,则a+b的值为__________
11、(4分)在一次函数y=(2﹣m)x+1中,y随x的增大而减小,则m的取值范围是_____.
12、(4分)如图,已知在中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是_____________________ .(只需填上一个正确的条件)
13、(4分)小明租用共享单车从家出发,匀速骑行到相距米的图书馆还书.小明出发的同时,他的爸爸以每分钟米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了分钟后沿原路按原速返回.设他们出发后经过(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线、线段分别表示、与之间的函数关系的图象.小明从家出发,经过___分钟在返回途中追上爸爸.
三、解答题(本大题共5个小题,共48分)
14、(12分)为贯彻落实关于“传承和弘扬中华优秀传统文化”的重要讲话精神,2018年5月27日我市举办了第二届湖南省青少年国学大赛永州复赛.本次比赛全市共有近200所学校4.6万名学生参加.经各校推荐报名、县区初赛选拔、市区淘汰赛的层层选拔,推选出优秀的学生参加全省的总决赛.下面是某县初赛时选手成绩的统计图表(部分信息未给出).
请根据图表信息回答下列问题:
(1)在频数分布表中, , .
(2)请将频数直方图补充完整;
(3)若测试成绩不低于120分为优秀,则本次测试的优秀率是多少?
15、(8分)已知函数,
(1)在平面直角坐标系中画出函数图象;
(2)函数图象与轴交于点,与轴交于点,已知是图象上一个动点,若的面积为,求点坐标;
(3)已知直线与该函数图象有两个交点,求的取值范围.
16、(8分)如图,在菱形ABCD中,对角线AC与BD相交于O点,AB=5,AC=6,过D点作DE//AC交BC的延长线于E点
(1)求△BDE的周长
(2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ
17、(10分)化简求值:,其中x=.
18、(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.
20、(4分)如图,四边形ABCD为菱形,∠D=60°,AB=4,E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CD于F点,垂足为点G,则线段GF的最小值为____________.
21、(4分)如果最简二次根式和是同类二次根式,那么a=_______
22、(4分)如图,折叠矩形纸片的一边AD,使点D落在BC边上的点F处,BC=10cm, AB=8cm, 则EC的长为_________.
23、(4分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.
25、(10分)如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:
26、(12分)用适当的方法解一元二次方程:x2+4x+3=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平移的坐标变化规律,将A的横坐标+2即可得到A′的坐标.
【详解】
∵点A(1,2)向右平移2个单位得到对应点,
∴点的坐标为(1+2,2),即(3,2).
故选A.
本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.
2、C
【解析】
首先得出的取值范围,进而得出-1的取值范围.
【详解】
∵,
∴,
故,
故选C.
此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
3、A
【解析】
由一次函数y=kx+b在y轴上的截距是b,可求解.
【详解】
∵在一次函数y=2x−1中,b=−1,
∴一次函数y=2x−1的截距b=−1.
故选:A.
本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标,一定满足该函数的关系式.
4、B
【解析】
先把a、b化简,然后计算b-a,b-c,a-c的值即可得出结论.
【详解】
解:a==,b= ==.
由b-a==>0,∴b>a,由b-c==>0,∴b>c,∴b最大.
又∵a-c==>0,∴a>c,故b>a>c.
故选B.
本题考查了无理数比较大小以及二次根式的性质.化简a、b是解题的关键.
5、B
【解析】
根据三角形中位线定理解答.
【详解】
∵点M,N分别是AC,BC的中点,
∴AB=2MN=38(m),
故选B.
本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.
6、D
【解析】
利用直角三角形的性质、三角形的外心的性质、平行四边形的对称性及判定分别判断后即可确定正确的选项.
【详解】
解:A、直角三角形中,30°角所对的直角边等于斜边的一半,正确,是真命题;
B、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,正确,是真命题;
C、平行四边形是中心对称图形,正确,是真命题;
D、对角线互相平分的四边形是平行四边形,故原命题错误,是假命题,
故选:D.
本题考查命题与定理的知识,解题的关键是了解直角三角形的性质、三角形的外心的性质、平行四边形的对称性及判定.
7、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
8、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知9人成绩的中位数是第5名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于9个人中,第5名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,需知道这9位同学的分数的中位数.
故选:B.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣3<y<1
【解析】
先求出x=﹣1时的函数值,再根据反比例函数的性质求解.
【详解】
解:当x=﹣1时,
,
∵k=3>1,
∴图象分布在一、三象限,在各个象限内,y随x的增大而减小,
∴当x<1时,y随x的增大而减小,且y<1,
∴y的取值范围是﹣3<y<1.
故答案为:﹣3<y<1.
本题主要考查反比例函数的性质.对于反比例函数(k≠1),当k>1时,在各个象限内,y随x的增大而减小;当k<1时,在各个象限内,y随x的增大而增大.
10、12-
【解析】
先估算的取值范围,再求出5+与5-的取值范围,从而求出a,b的值.
【详解】
解:∵3<<4,
∴8<5+<9,1<5-<2,
∴5+的整数部分为a=8,5-的小数部分为b=5--1=4-,
∴a+b=8+4-=12-,
故答案为12-.
本题主要考查了无理数的估算,解题关键是确定无理数的范围.
11、m>1.
【解析】
根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.
【详解】
∵一次函数y=(1﹣m)x+1的函数值y随x的增大而减小,∴1﹣m<0,∴m>1.
故答案为m>1.
本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.
12、AD⊥BC
【解析】
根据等腰三角形“三线合一”,即可得到答案.
【详解】
∵在中,AB=AC,,
.
故答案为:.
本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”,是解题的关键.
13、1.
【解析】
用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在图书馆停留2分钟,即x-2分钟所走的路程减去小亮从家到图书馆相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来
【详解】
解:小亮骑自行车的速度是2400÷10=240m/min;
先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:
(x-2)×240-2400=96x
240x-240×2-2400=96x
144x=2880
x=1.
答:小亮从家出发,经过1分钟,在返回途中追上爸爸.
此题考查一次函数的实际运用,根据图象,找出题目蕴含的数量关系,根据速度、时间、路程之间关系解决问题.
三、解答题(本大题共5个小题,共48分)
14、 (1)m=0.2,n=20;(2)图见解析;(3)50%.
【解析】
(1)根据成绩在105≤x<120的频数和频率可以求得本次调查的人数,从而可以求得m、n的值;
(2)根据(1)中n的值,可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据可以得到本次测试的优秀率.
【详解】
解:(1)由表可知:105≤x<120的频数和频率分别为15、0.3,
∴本次调查的人数为:15÷0.3=50,
∴m=10÷50=0.2,
n=50×0.4=20,
故答案为:0.2,20;
(2)由(1)知,n=20,
补全完整的频数分布直方图如右图所示;
(3)成绩不低于120分为优秀,则本次测试的优秀率:(0.4+0.1)×100%=50%,
答:本次测试的优秀率是50%.
本题考查频数分布直方图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.
15、(1)图略;(2)或;(3)的取值范围是或.
【解析】
(1)去绝对值,化为常见的一次函数,画出图像即可;
(2)由的面积可先求出P点纵坐标y的值,再由函数解析式求出x值;
(3)当直线介于经过点A的直线与平行于直线时,其与函数图像有两个交点.
【详解】
解: ,所以函数图像如图所示
如图,作轴
或1
或
直线与轴的交点为
①当直线经过时,
②当直线平行于直线时,
的取值范围是或
本题考查了函数的图像,合理的将图像与一次函数相结合是解题的关键.
16、(1)1;(2)证明见解析.
【解析】
分析:(1)因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB,然后利用平行四边形的判定及性质就可以求出△BDE的周长;
(2)容易证明△BOP≌△DOQ,再利用它们对应边相等就可以了.
详解:(1)解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5,AC⊥BD,OB=OD,OA=OC=3,
∴OB==4,BD=2OB=8,
∵AD∥CE,AC∥DE,
∴四边形ACED是平行四边形,
∴CE=AD=BC=5,DE=AC=6,
∴△BDE的周长是:BD+BC+CE+DE=8+10+6=1.
(2)证明:∵四边形ABCD是菱形,
∴AD∥BC,
∴∠QDO=∠PBO,
∵在△DOQ和△BOP中
,
∴△DOQ≌△BOP(ASA),
∴BP=DQ.
点睛:本题考查了菱形的性质,平行四边形的判定与性质,勾股定理,也考查了全等三角形的判定及性质;这是一道综合性的题,熟悉每个知识点是解决问题的关键.
17、
【解析】
首先按照乘法分配律将原式变形,然后根据分式的基本性质进行约分,再去括号,合并同类项即可进行化简,然后将x的值代入化简后的式子中即可求解.
【详解】
原式=
当时,原式.
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
18、(1)A型:100元,B型:150元;(2)①y=-50x+15000;②34台A型电脑和66台B型,利润最大,最大利润是1元
【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;然后根据销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元列出方程组,然后求解即可;
(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;
②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
【详解】
解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;
根据题意得,
解得.
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;
(2)①根据题意得,y=100x+150(100-x),
即y=-50x+15000;
②据题意得,100-x≤2x,
解得x≥33,
∵y=-50x+15000,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100-x=66,
此时最大利润是y=-50×34+15000=1.
即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是1元.
本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、13.
【解析】
利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案
【详解】
利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13
本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线
20、1
【解析】
作辅助线,构建三角形全等,证明Rt△AFM≌Rt△EFN(HL),得∠AFM=∠EFN,再证明△AEF是等边三角形,计算FG=AG=AE,确认当AE⊥BC时,即AE=2时,FG最小.
【详解】
解:连接AC,过点F作FM⊥AC于,作FN⊥BC于N,连接AF、EF,
∵四边形ABCD是菱形,且∠D=60°,
∴∠B=∠D=60°,AD∥BC,
∴∠FCN=∠D=60°=∠FCM,
∴FM=FN,
∵FG垂直平分AE,
∴AF=EF,
∴Rt△AFM≌Rt△EFN(HL),
∴∠AFM=∠EFN,
∴∠AFE=∠MFN,
∵∠FMC=∠FNC=90°,∠MCN=120°,
∴∠MFN=60°,
∴∠AFE=60°,
∴△AEF是等边三角形,
∴FG=AG=AE,
∴当AE⊥BC时,Rt△ABE中,∠B=60°,
∴∠BAE=10°,
∵AB=4,
∴BE=2,AE=2,
∴当AE⊥BC时,即AE=2时,FG最小,最小为1;
故答案为1.
本题考查了菱形的性质,等边三角形的判定,三角形全等的性质和判定,垂线段的性质等知识,本题有难度,证明△AEF是等边三角形是本题的关键.
21、3
【解析】
分析:根据同类二次根式的被开方式相同列方程求解即可.
详解:由题意得,
3a+4=25-4a,
解之得,
a=3.
故答案为:3.
点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
22、3cm
【解析】
【分析】由矩形的性质可得CD=AB=8,AD=BC=10,由折叠的性质可得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,由勾股定理可求出BF的长,继而可得FC的长,设CE=x,则DE=8-x,EF= DE=8-x,在Rt△CEF中,利用勾股定理即可救出CE的长.
【详解】∵四边形ABCD为矩形,
∴CD=AB=8,AD=BC=10,
∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,
∴AF=AD=10,DE=EF,∠AFE=∠D=90°,
在Rt△ABF中,BF==6,
∴FC=BC-BF=4,
设CE=x,则DE=8-x,EF= DE=8-x,
在Rt△CEF中,
∵CF2+CE2=EF2,
∴42+x2=(8-x)2,解得x=3,
即CE=3cm,
故答案为:3cm.
【点睛】本题考查了矩形的性质、折叠的性质、勾股定理等,熟练掌握相关的性质及定理是解题的关键.
23、36°
【解析】
∵多边形ABCDE是正五边形,
∴∠BAE==108°,
∴∠1=∠2=(180°-∠BAE),
即2∠1=180°-108°,
∴∠1=36°.
二、解答题(本大题共3个小题,共30分)
24、DE=BF,DE∥BF.
【解析】
由平行四边形的性质可得AD=BC,AD∥BC,由“SAS”可证△ADE≌△CBF,即可得结论.
【详解】
解:DE∥BF DE=BF
.理由如下:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAC=∠ACB,且AE=CF,AD=BC,
∴△ADE≌△CBF(SAS),
∴DE=BF,∠AED=∠BFC,
∴∠DEC=∠AFB,
∴DE∥BF.
∴DE=BF,DE∥BF.
本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用平行四边形的性质是本题的关键.
25、见详解.
【解析】
结合正方形的性质利用AAS可证,由全等三角形对应边相等的性质易证结论.
【详解】
证明:四边形ABCD是正方形
在和中,
本题主要考查了全等三角形的判定与性质,灵活的利用正方形的性质及平行线的性质确定全等的条件是解题的关键.
26、x2=-3,x2=-2
【解析】
利用因式分解法解方程.
【详解】
解:(x+3)(x+2)=2,
x+3=2或x+2=2,
所以x2=-3,x2=-2.
本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年天津市和平区双菱中学数学九上开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年天津和平区天津市双菱中学八上数学期末检测试题含答案,共6页。
这是一份天津市和平区双菱中学2023-2024学年八上数学期末检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中,正确的是,数据5,7,8,8,9的众数是,若分式的值不存在,则的值是等内容,欢迎下载使用。