2024年天津市河北区扶轮中学数学九上开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为( )
A.65°B.60°C.55°D.45°
2、(4分)如图,点是线段的中点,分别以为边作等腰和等腰,,连接,且相交于点,交于点,则下列说法中,不正确的是( )
A.是的中线B.四边形是平行四边形
C.D.平分
3、(4分)如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于( )
A.60°B.65°C.75°D.80°
4、(4分)在中,,,,则的长为( )
A.3B.2C.D.4
5、(4分)如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
A.B.
C.D.
6、(4分) 如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为( )
A.﹣1B.1C.2D.﹣2
7、(4分)若样本x1+1,x2+1,x3+1,…,xn+1的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…,xn+2,下列结论正确的是( )
A.平均数为18,方差为2B.平均数为19,方差为2
C.平均数为19,方差为3D.平均数为20,方差为4
8、(4分)某个函数自变量的取值范围是x≥-1,则这个函数的表达式为( )
A.y=x+1B.y=x2+1C.y=D.y=
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的根是__________.
10、(4分)若八个数据x1, x2, x3, ……x8, 的平均数为8,方差为1,增加一个数据8后所得的九个数据x1, x2, x3, …x8;8的平均数________8,方差为S2 ________1.(填“>”、“=”、“<”)
11、(4分)数据101,98,102,100,99的方差是______.
12、(4分)一次函数y=-2x+1上有两个点A,B,且A(-2,m),B(1,n),则m,n的大小关系为m_____n
13、(4分)如果一组数据的方差为,那么这组数据的标准差是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.
(1)求证:四边形ABCD是矩形;
(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.
15、(8分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:BE=AD;
(2)求∠BFD的度数.
16、(8分) (1)化简:.
(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.
17、(10分)如图,正方形网格中每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,已知△ABC的三个顶点都是格点,请按要求画出三角形.
(1)将△ABC先上平移1个单位长度再向右平移2个单位长度,得到△A'B'C';
(2)将△A'B'C'绕格点O顺时针旋转90°,得到△A''B''C''.
18、(10分)在学校组织的“最美数学小报”的评比中,校团委给每个同学的作品打分,成绩分为四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,将八(1)班与八(2)班的成绩整理并绘制成如下统计图:
请你根据以上提供的信息解答下列问题:
(1)将表格补充完整.
(2)若八(1)班有40人,且评分为B级及以上的同学有纪念奖章,请问该班共有几位同学得到奖章?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是_______
20、(4分)如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.
21、(4分)= ▲ .
22、(4分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).
23、(4分)如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生 自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了 名学生;
(2)补全两幅统计图;
(3)根据抽样调查的结果,估算该校 1000 名学生中大约有多少人选择“小组合作学习”?
25、(10分)甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:
图中的值是__________;
第_________天时,甲、乙两个车间加工零件总数相同.
26、(12分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y(℃)与开机时间x(分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:
(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;
(2)求图中t的值;
(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先根据题意得出MN是线段BC的垂直平分线,故可得出CD=BD,即∠B=∠BCD,再由∠B=30°、∠A=55°知∠ACB=180°-∠A-∠B=95°,根据∠ACD=∠ACB-∠BCD即可。
【详解】
解:根据题意得出MN是线段BC的垂直平分线,
∵CD=BD,
∴∠B=∠BCD=30°.
∵∠B=30°,∠A=55°,
∴∠ACB=180°-∠A-∠B=95°,
∴∠ACD=∠ACB-∠BCD=65°,故选:A.
本题考查的是作图一基本作图,熟知线段垂直平分线的作法是解答此题的关键.
2、D
【解析】
根据平行四边形、全等三角形的判定与性质以及等腰三角形三线合一的性质,逐一判定即可.
【详解】
∵点是线段的中点,
∴BC=EC
∵等腰和等腰,,
∴AB=AC=CD=DE,∠ABC=∠ACB=∠DCE=∠DEC=45°
∴∠ACD=90°,AD=BC=EC
∴∠CAD=∠CDA=45°
∴AD∥BE
∴四边形是平行四边形,故B选项正确;
在△ABE和△DEB中,
∴△ABE≌△DEB(SAS)
∴,故C选项正确;
∴∠DBE=∠AEB
∴FC⊥BE
∵AD∥BE
∴FC⊥AD
∴是的中线,故A选项正确;
∵AC≠CE
∴不可能平分,故D选项错误;
故选:D.
此题主要考查平行四边形、全等三角形的判定与性质以及等腰三角形的性质,熟练掌握,即可解题.
3、C
【解析】
连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
【详解】
连接BD,
∵四边形ABCD为菱形,∠A=60°,
∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
∵P为AB的中点,
∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
∴∠PDC=90°,
∴由折叠的性质得到∠CDE=∠PDE=45°,
在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
故选:C.
此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
4、D
【解析】
根据,可得,再把AB的长代入可以计算出CB的长.
【详解】
解:∵csB=,
∴BC=AB•csB=6×=1.
故选:D.
此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.
5、C
【解析】
本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.
【详解】
最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.
故本题选C.
本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.
6、A
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.
【详解】
方程两边都乘以x﹣5,得:x﹣6+x﹣5=m.
∵方程有增根,∴x=5,将x=5代入x﹣6+x﹣5=m,得:m=﹣1.
故选A.
本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
7、B
【解析】
根据平均数、方差的意义以及求解方法进行求解即可得.
【详解】
由题意可知:
,
=
=2,
所以
=,
=
=2,
故选B.
本题考查了平均数、方差的计算,熟练掌握平均数以及方差的计算公式是解题的关键.
8、C
【解析】
根据被开方数大于等于0,分母不等于0分别求出各选项的函数的取值范围,从而得解.
【详解】
解:A、自变量的取值范围是全体实数,故本选项错误;
B、自变量的取值范围是全体实数,故本选项错误;
C、由x+1≥0得,x≥-1,故本选项正确;
D、由x+10得,x-1,故本选项错误.
故选:C.
本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
解1x4=31得x1=4或x1=-4(舍),再解x1=4可得.
【详解】
解:1x4=31,
x4=16,
x1=4或x1=-4(舍),
∴x=±1,
故答案为:x=±1.
本题考查解高次方程的能力,利用平方根的定义降幂、求解是解题的关键.
10、= <
【解析】
根据八个数据x1 , x2 , x3 , ……x8 , 的平均数为8,方差为1 ,利用平均数和方差的计算方法,可求出, , 再分别求出9个数的平均数和方差,然后比较大小就可得出结果
【详解】
解:∵ 八个数据x1 , x2 , x3 , ……x8 , 的平均数为8,
∴
∴,
∵增加一个数8后,九个数据x1 , x2 , x3 , 8…x8的平均数为:
;
∵ 八个数据x1 , x2 , x3 , ……x8 , 的方差为1,
∴
∴
∵增加一个数8后,九个数据x1 , x2 , x3 , 8…x8的方差为:
;
故答案为:=,<
本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.
11、1
【解析】
先求平均数,再根据方差公式求方差.
【详解】
平均数 .x=(98+99+100+101+101)=100,
方差s1= [(98-100)1+(99-100)1+(100-100)1+(101-100)1+(101-100)1]=1.
故答案为1
本题考核知识点:方差. 解题关键点:熟记方差公式.
12、>
【解析】
根据一次函数增减性的性质即可解答.
【详解】
∵一次函数y=-2x+1中,-2<0,
∴y随x的增大而减小,
∵A(-2,m),B(1,n)在y=-2x+1的图象上,-2<1,
∴m>n.
故答案为:>.
本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.
13、
【解析】
求出9的算术平方根即可.
【详解】
∵S²=9,S==3,
故答案为3
本题考查的是标准差的计算,计算标准差需要先知道方差,标准差即方差的算术平方根.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)∠ADO==36°.
【解析】
(1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;
(2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在△ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC的度数,由此即可求得答案.
【详解】
(1)∵AO=OC,BO=OD,
∴四边形ABCD是平行四边形,
又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,
∴∠AOB=∠OAD+∠ADO.
∴∠OAD=∠ADO.
∴AO=OD.
又∵AC=AO+OC=2AO,BD=BO+OD=2OD,
∴AC=BD.
∴四边形ABCD是矩形.
(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,
在△ODC中,∠DOC+∠OCD+∠CDO=180°
∴4x+3x+3x=180°,解得x=18°,
∴∠ODC=3×18°=54°,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴∠ADO=∠ADC-∠ODC=90°-54°=36°.
本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.
15、(1)见解析;(2)60°
【解析】
(1)根据等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后根据SAS可证△ABE≌△CAD,再根据全等三角形的性质即得结论;
(2)由全等三角形的性质可得∠ABE=∠CAD,然后根据三角形的外角性质和角的和差即可得出结果.
【详解】
解:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠C=60°,
又∵AE=CD,
∴△ABE≌△CAD(SAS),
∴BE=AD;
(2)∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.
本题考查了等边三角形的性质、三角形的外角性质以及全等三角形的判定和性质,属于常考题型,熟练掌握上述基本知识是解题的关键.
16、 (1)x+1;(2)-2.
【解析】
(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;
(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.
【详解】
(1)原式=
=x+1;
(2)解不等式“”得,
∴其负整数解是-3、-2、-1.
∴当时,原式=-3+1=-2
分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.
17、(1)见解析;(2)见解析.
【解析】
(1)先找出平移后的点A′、B′、C′,再顺次连接即可;
(2)根据网格的特点和旋转的性质,找出A′′、B′′、C′′,再顺次连接即可;
【详解】
(1)如图,即为所求;
(2)如图,即为所求;
本题考查了平移的性质,旋转的性质,根据性质找出对应点是解答本题的关键.
18、(1)①85.25;②80;③80(2)16
【解析】
(1)根据平均数、中位数和众数的计算方法分别计算得出;
(2)由统计图可知B级及以上的同学所占比例分别为17.5%和22.5%,用总人数40乘以B级及以上所占的百分比的和即可得出结果.
【详解】
(1)
①
②总计40个数据,从小到大排列得第20、21位数字都是80分,所以中位数为80
③众数即目标样本内相同数字最多的数,由扇形图可知C级所占比例最高,所以众数为80
(2)由统计图可知B级及以上的同学所占比例分别为17.5%和22.5%,计算可得:(人)
本题主要考查了条形统计图和扇形统计图的综合运用,以及中位数以及众数的定义,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比,难度不大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形的性质,可得AC是BD的垂直平分线,可得AC上的点到D、B点的距离相等,连接BE交AC与P,可得答案.
【详解】
解:∵菱形的性质,
∴AC是BD的垂直平分线,AC上的点到B、D的距离相等.
连接BE交AC于P点,
PD=PB,
PE+PD=PE+PB=BE,
在Rt△ABE中,由勾股定理得
故答案为3
本题考查了轴对称,对称轴上的点到线段两端点的距离相等是解题关键.
20、或
【解析】
分两种情况:点F线段BC上时或在CB的延长线上时,根据正方形的性质及旋转的性质证明△ABF≌△ADE得到BF=DE,即可求出答案.
【详解】
∵四边形ABCD是正方形,
∴∠A=∠B=90°,AB=AD=BC=CD=DE+CE=2+1=3,
由旋转得AF=AE,
∴△ABF≌△ADE,
∴BF=DE=2,
如图:当点F线段BC上时,CF=BC-BF=3-2=1,
当点F在CB延长线上时,CF=BC+BF=3+2=5,
故答案为:1或5.
此题考查正方形的性质,全等三角形的判定及性质,旋转的性质,正确理解题意分情况解题是关键.
21、1.
【解析】
针对零指数幂,二次根式化简和运算等考点分别进行计算,然后根据实数的运算法则求得计算结果:.
22、AF=CE(答案不唯一).
【解析】
根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.
根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.
添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.
23、1
【解析】
由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴BC=AD=8,
∵点E、F分别是BD、CD的中点,
∴EF=BC=×8=1.
故答案为1.
此题考查了平行四边形的性质与三角形中位线的性质.熟练掌握相关性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)500(2)见解析(3)300人
【解析】
(1)根据“个人自学后老师点拨”与所占的百分比进行计算即可得解.
(2)求出“教师传授”的人数:(人)补全条形统计图;求出“教师传授”所占百分比:和“小组合作学习” 所占百分比:补全扇形统计图.
(3)用样本估计总体.
【详解】
解:(1)根据“个人自学后老师点拨”300人.占60%,得(人).
(2)补全统计图如下:
(3)∵(人),
∴根据抽样调查的结果,估计该校1000名学生中大约有300人选择“小组合作学习”.
考点:1.条形统计图;2.扇形统计图;3.用样本估计总体.
25、770 1
【解析】
(1)根据题意和函数图象中的数据可以求得m的值;
(2)根据题意和函数图象中的数据可以求得甲的速度、乙引入设备前后的速度,乙停工的天数,从而可以求得第几天,甲、乙两个车间加工零件总数相同.
【详解】
解:(1)由题意可得,
m=720+50=770,
故答案为:770;
(2)由图可得,
甲每天加工的零件数为:720÷9=10(个),
乙引入新设备前,每天加工的零件数为:10-(40÷2)=60(个),
乙停工的天数为:(200-40)÷10=2(天),
乙引入新设备后,每天加工的零件数为:(770-60×2)÷(9-2-2)=130(个),
设第x天,甲、乙两个车间加工零件总数相同,
10x=60×2+130(x-2-2),
解得,x=1,
即第1天,甲、乙两个车间加工零件总数相同,
故答案为:1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
26、(1)y=8x+20;(2)t=50;(3)饮水机内的温度约为76℃
【解析】
(1)利用待定系数法代入函数解析式求出即可;
(2)首先求出反比例函数解析式进而得出t的值;
(3)利用已知由x=7代入求出饮水机内的温度即可.
【详解】
解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,
依据题意,得,
解得:,
故此函数解析式为:y=8x+20;
(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,
依据题意,得:100=,
即m=1000,
故y=,
当y=20时,20=,
解得:t=50;
(3)∵57-50=7≤10,
∴当x=7时,y=8×7+20=76,
答:小明散步57分钟回到家时,饮水机内的温度约为76℃.
此题主要考查了一次函数以及反比例函数的应用,根据题意得出正确的函数解析式是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
平均数(分)
中位数(分)
众数(分)
八(1)班
83.75
80
八(2)班
80
平均数(分)
中位数(分)
众数(分)
八(1)班
83.75
80
③80
八(2)班
①85.25
②80
80
2024年天津市河北区数学九上开学质量检测试题【含答案】: 这是一份2024年天津市河北区数学九上开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年苏州市重点中学数学九上开学调研试题【含答案】: 这是一份2024年苏州市重点中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省桐城实验中学数学九上开学调研试题【含答案】: 这是一份2024年安徽省桐城实验中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。