2024年铜陵市数学九年级第一学期开学经典模拟试题【含答案】
展开
这是一份2024年铜陵市数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)电话每台月租费元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过分钟,则每月应缴费(元)与市内电话通话次数之间的函数关系式是( )
A.B.
C.D.
2、(4分)如图,以正方形ABCD的边AD为一边作等边△ADE,则∠AEB等于( )
A.10°B.15°C.20°D.12.5°
3、(4分)若a-b+c=0,则一元二次方程ax2+bx+c=0有一根是( )
A.2 B.1 C.0 D.-1
4、(4分)如图,在平面直角坐标系 xOy 中,菱形 ABOC 的顶点 O 在坐标原点,边 BO 在 x 轴的负半轴上,顶点 C的坐标为(﹣3,4),反比例函数 y 的图象与菱形对角线 AO 交于 D 点,连接 BD,当 BD⊥x 轴时,k的值是( )
A.B.C.﹣12D.
5、(4分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是( )
A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF
6、(4分)下列事件是确定事件的是( )
A.射击运动员只射击1次,就命中靶心
B.打开电视,正在播放新闻
C.任意一个三角形,它的内角和等于180°
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6
7、(4分)根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是( )
A.二次函数图像的对称轴是直线x=1;
B.当x>0时,y<4;
C.当x≤1时,函数值y是随着x的增大而增大;
D.当y≥0时,x的取值范围是-1≤x≤3时.
8、(4分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=kx+2的图象与x轴交点的横坐标为6,则当-3≤x≤3时,y的最大值是______.
10、(4分)一元二次方程 的一次项系数为_________.
11、(4分)因式分解:=______.
12、(4分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=___________°.
13、(4分)计算:π0-()-1=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)随着我国经济社会的发展,人民对于美好生活的追求越来越高,外出旅游已成为时尚.某社区为了了解家庭旅游消费情况,随机抽取部分家庭,对每户家庭的年旅游消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:
(1)本次被调査的家庭有 户,表中 a= ;
(2)本次调查数据的中位数出现在 组.扇形统计图中,E组所在扇形的圆心角是 度;
(3)若这个社区有2700户家庭,请你估计家庭年旅游消费8000元以上的家庭有多少户?
15、(8分)如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).
(1)求m,k的值;
(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.
16、(8分)全国两会民生话题成为社会焦点,我市记者为了解百姓“两会民生话题”的聚焦点,随机调查了我市部分市民,并对调查结果进行整理,绘制了如图所示的两幅不完整的统计图表.
请根据图表中提供的信息解答下列问题:
(1)填空:m= ,n= ,扇形统计图中E组所占的百分比为 %;
(2)我市人口现有650万,请你估计其中关注D组话题的市民人数.
17、(10分)某学校数学兴趣小组在探究一次函数性质时得到下面正确结论:对于两个一次函数y=k1x+b1和y=k2x+b2,若两个一次函数的图象平行,则k1=k2且b1≠b2;若两个一次函数的图象垂直,则k1•k2=﹣1.请你直接利用以上知识解答下面问题:如图,在平面直角坐标系中,已知点A(0,8),B(6,0),P(6,4).
(1)把直线AB向右平移使它经过点P,如果平移后的直线交y轴于点A′,交x轴于点B′,求直线A′B′的解析式;
(2)过点P作直线PD⊥AB,垂足为点D,按要求画出直线PD并求出点D的坐标;
18、(10分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).
20、(4分)把抛物线yx2向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为_____.
21、(4分)已知正方形的对角线为4,则它的边长为_____.
22、(4分)如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.
23、(4分)若一组数据2,,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示
(1)本次共抽查学生____人,并将条形图补充完整;
(2)捐款金额的众数是_____,平均数是_____;
(3)在八年级700名学生中,捐款20元及以上(含20元)的学生估计有多少人?
25、(10分)关于的一元二次方程.
(1)方程有实数根,求的范围;
(2)求方程两根的倒数和.
26、(12分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′(不写画法);
(2)并直接写出点B′、C′的坐标:B′( )、C′( );
(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是( ).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
本题考查了一次函数的解析式,设为,把k和b代入即可.
【详解】
设函数解析式为:,
由题意得,k=0.2,b=28,
∴函数关系式为:.
故选:C.
本题考查了一次函数解析式的表示,熟练掌握一次函数解析式的表示方法是解题的关键.
2、B
【解析】
根据正方形性质求出AB=AD,∠BAD=90°,根据等边三角形的性质得出∠EAD=60°,AD=AE=AB,推出∠ABE=∠AEB,根据三角形的内角和定理求出即可.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵三角形ADE是等边三角形,
∴∠EAD=60°,AD=AE=AB,
∴∠ABE=∠AEB,
∵∠ABE+∠AEB+∠BAE=180°,
∴∠AEB=×(180°-90°-60°)=15°,
故选:B.
本题考查了等腰三角形的性质,三角形的内角和定理,正方形性质,等边三角形的性质的应用,关键是求出∠BAE的度数,通过做此题培养了学生的推理能力,题目综合性比较强,是一道比较好的题目.
3、D
【解析】
把a-b+c = 0与ax²+bx+c = 0比较,可以发现把x = ﹣1代入方程ax2+bx+c = 0,即可出现a-b+c = 0,说明,一元二次方程ax2+bx+c = 0一定有一根﹣1.
【详解】
∵把x = ﹣1代入方程ax²+bx+c = 0,可得a-b+c = 0,
∴一元二次方程ax²+bx+c = 0一定有一根﹣1.故选D.
本题考查了方程解的定义,如果一个数是方程的解,则把方程中的x换成这个数,得到的等式仍成立,特别是对于一元二次方程,要能通过a、b、c的关系式看出ax²+bx+c = 0的根是什么.
4、B
【解析】
先利用勾股定理计算出OC=5,再利用菱形的性质得到AC=OB=OC=5,AC∥OB,则B(-5,0),A(-8,4),接着利用待定系数法确定直线OA的解析式为y=-x,则可确定D(-5,),然后把D点坐标代入y=中可得到k的值.
【详解】
∵C(−3,4),
∴OC==5,
∵四边形OBAC为菱形,
∴AC=OB=OC=5,AC∥OB,
∴B(−5,0),A(−8,4),
设直线OA的解析式为y=mx,
把A(−8,4)代入得−8m=4,解得m=−,
∴直线OA的解析式为y=-x,
当x=−5时,y=-x =,则D(−5,),
把D(−5,)代入y=,
∴k=−= .
故选B.
本题考查反比例函数图象上点的坐标特征和菱形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和菱形的性质.
5、D
【解析】
解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;
∴添加BC=EF,利用SAS可得△ABC≌△DEF;
∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;
故选D.
点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.
6、C
【解析】
利用随机事件以及确定事件的定义分析得出答案.
【详解】
A.射击运动员只射击1次,就命中靶心,是随机事件. 故选项错误;
B.打开电视,正在播放新闻,是随机事件.故选项错误;
C.任意一个三角形,它的内角和等于180°,是必然事件.故选项正确;
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件.故选项错误.
故选C.
本题考查了随机事件和确定事件,正确把握相关事件的确定方法是解题的关键.
7、B
【解析】
试题分析:,
所以x=1时,y取得最大值4,
时,y<4,B错误
故选B.
考点:二次函数图像
点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.
8、D
【解析】
利用函数图象,找出直线y=x+m在直线y=kx-1的下方所对应的自变量的范围即可
【详解】
解析
根据图象得,当x
相关试卷
这是一份2024年山西农业大学附属学校数学九年级第一学期开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省菏泽市名校数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省沛县九年级数学第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。