2024年新疆师大附中数学九上开学监测模拟试题【含答案】
展开
这是一份2024年新疆师大附中数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程2x(x+1)=(x+1)的根是()
A.x=0B.x=1
C.D.
2、(4分)如图,在平行四边形ABCD中,AB=10,AD=12,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为( )
A.8B.C.D.6
3、(4分)关于的一元二次方程有一个根为,则的值为( )
A.B.C.D.
4、(4分)一次函数的图像不经过第四象限,那么的取值范围是( )
A.B.C.D.
5、(4分)分式方程有增根,则的值为
A.0和3B.1C.1和D.3
6、(4分)下列各式计算正确的是( )
A.B.C.D.
7、(4分)(2017广西贵港第11题)如图,在中, ,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值是 ( )
A.B.C.D.
8、(4分)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则kx+b<4x+4的解集为( )
A.x>B.x<C.x<1D.x>1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
10、(4分)不等式组的解集是________.
11、(4分)如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.
12、(4分)如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为 .
13、(4分)一次函数y=2x-1的图象在轴上的截距为______
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,为了美化环境,建设魅力呼和浩特,呼和浩特市准备在一个广场上种植甲、乙两种花卉经市场调查,甲种花卉的种植费用 (元)与种植面积之间的函数关系如图所示乙种花卉的种植费用为每平方米100元
(1)直接写出当和时,与的函数关系式.
(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?
15、(8分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是 米分钟,乙在地提速时距地面的高度为 米;
(2)直接写出甲距地面高度(米和(分之间的函数关系式;
(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?
16、(8分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.
(1)请填写下表:
(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:
(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)
17、(10分)反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2)
(1)求这两个函数解析式;
(2)在y轴上求作一点P,使PA+PB的值最小,并直接写出此时点P的坐标.
18、(10分)如图,D是△ABC内一点,连接DB、DC、DA,并将AB、DB、DC、AC的中点E、H、G、F依次连接,得到四边形EHGF.
(1)求证:四边形EHGF是平行四边形;
(2)若BD⊥CD,AD=7,BD=8,CD=6,求四边形EHGF的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.
20、(4分)正比例函数y=kx(k≠0)的图象经过点A(-1,5),则k=__________
21、(4分)函数的自变量x的取值范围是 .
22、(4分)如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.
23、(4分)如图,在菱形中,,,点在上,以为对角线的所有中,最小的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做300个所用的时间与乙做200个所用的时间相等,求甲乙两人每小时各做几个零件?
25、(10分)如图,平行四边形ABCD中,AE=CE.
(1)用尺规或只用无刻度的直尺作出的角平分线,保留作图痕迹,不需要写作法.
(2)设的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.
26、(12分)小明遇到这样一个问题:
如图,点是中点,,求证:.
小明通过探究发现,如图,过点作.交的延长线于点,
再证明,使问题得到解决。
(1)根据阅读材料回答:的条件是______(填“”“”“”“”或“”)
(2)写出小明的证明过程;
参考小明思考问题的方法,解答下列问题:
(3)已知,中,是边上一点,,,分别在,上,连接.点是线段上点,连接并延长交于点,.如图,当时,探究的值,并说明理由:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
移项,提公因式法分解因式,即可求得方程的根.
【详解】
解:2x(x+1)=(x+1),
2x(x+1)-(x+1)=0,
(2x-1)(x+1)=0,
则方程的解是:x1= ,x2=-1.
故选:D.
本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.
2、A
【解析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.
【详解】
解:∵翻折后点B恰好与点C重合,
∴AE⊥BC,BE=CE,
∵BC=AD=12,
∴BE=6,
∴AE=,
故选:A.
本题主要考查了平行四边形的性质,作图-轴对称变换,掌握平行四边形的性质,作图-轴对称变换是解题的关键.
3、C
【解析】
首先根据题意,将这个根代入方程,然后即可得解.
【详解】
由已知条件,将0代入方程,得
解得
故答案为C.
此题主要考查根据一元二次方程的根求参数的值,熟练运用,即可解题.
4、A
【解析】
根据一次函数经过的象限即可确定,解不等式即可得出的取值范围.
【详解】
∵一次函数的图像不经过第四象限,
∴,
解得,
故选:A.
本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.
5、D
【解析】
等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.
【详解】
∵分式方程-1=有增根,
∴x﹣1=0,x+1=0,
∴x1=1,x1=﹣1.
两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,
整理得,m=x+1,
当x=1时,m=1+1=2;
当x=﹣1时,m=﹣1+1=0,
当m=0,方程无解,
∴m=2.
故选D.
6、C
【解析】
原式各项利用二次根式的化简公式计算得到结果,即可做出判断.
【详解】
(A)=2,是4的算术平方根,为正2,故A错;
(B)由平方差公式,可得:=3,正确。
(C)=2,故错;
(D)、没有意义,故错;
选C。
此题考查算术平方根,解题关键在于掌握运算法则
7、B
【解析】
试题解析:如图连接PC.
在Rt△ABC中,∵∠A=30°,BC=2,
∴AB=4,
根据旋转不变性可知,A′B′=AB=4,
∴A′P=PB′,
∴PC=A′B′=2,
∵CM=BM=1,
又∵PM≤PC+CM,即PM≤3,
∴PM的最大值为3(此时P、C、M共线).
故选B.
8、A
【解析】
将点A(m,)代入y=4x+4求出m的值,观察直线y=kx+b落在直线y=4x+4的下方对应的x的取值即为所求.
【详解】
∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),
∴4m+4=,
∴m=-,
∴直线y=kx+b与直线y=4x+4的交点A的坐标为(-,),直线y=kx+b与x轴的交点坐标为B(1,0),
∴当x>-时,kx+b<4x+4,
故选A.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.
【详解】
∵点(a,b)在一次函数y=2x-1的图象上,
∴b=2a-1,
∴2a-b=1,
∴4a-2b=6,
∴4a-2b-1=6-1=1,
故答案为:1.
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
10、>1
【解析】
根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
【详解】
,
解不等式①,得x>1,
解不等式②,得x≥-2,
所以不等式组的解集为:x>1.
故答案为:x>1.
本题考查的是一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
11、1
【解析】
根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.
【详解】
解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,
∴△ABC≌△A1BC1,
∴A1B=AB=6,
∴△A1BA 是等腰三角形,∠A1BA=30°,
∴S△A1BA= ×6×3=1,
又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,
S△A1BC1=S△ABC,
∴S 阴影=S△A1BA=1. 故答案为1.
本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.
12、x<.
【解析】
先把点A(m,3)代入函数y=2x求出m的值,再根据函数图象即可直接得出结论.
【详解】
∵点A(m,3)在函数y=2x的图象上,
∴3=2m,解得m=,
∴A(,3),
由函数图象可知,当x<时,函数y=2x的图象在函数y=ax+5图象的下方,
∴不等式2x<ax+5的解集为:x<.
13、-1
【解析】
根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.
【详解】
解:∵一次函数y=2x-1中b=-1,
∴图象在轴上的截距为-1.
故答案为:-1.
本题考查了一次函数图象上点的坐标特征.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)应该分配甲、乙两种花卉的种植面积分别是800m2 和400m2,才能使种植总费用最少,最少总费用为121000元.
【解析】
(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.
(2)设种植总费用为W元,甲种花卉种植为am2,则乙种花卉种植(1200−a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.
【详解】
解:(1)当0≤x≤300,设y=kx,将点(300,36000)代入得:
36000=300k,
∴k=120,
当x>300,设y=mx+n,将点(300,36000)及点(500,54000)代入
得,解得m=90,n=9000,
∴y=90x+9000,
∴,
(2)设种植总费用为W元,甲种花卉种植为am2,则乙种花卉种植(1200−a)m2,
由题意得:,
∴200≤a≤800
当200≤a≤300时,W1=120a+100(1200−a)=20a+1.
∵20>0,W1随a增大而增大,
∴当a=200 时.Wmin=124000 元
当300<a≤800时,W2=90a+9000+100(1200−a)=−10a +2.
∵-10<0,W2随a增大而减小,
当a=800时,Wmin=121000 元
∵124000>121000
∴当a=800时,总费用最少,最少总费用为121000元.
此时乙种花卉种植面积为1200−800=400(m2).
答:应该分配甲、乙两种花卉的种植面积分别是800m2 和400m2,才能使种植总费用最少,最少总费用为121000元.
本题是看图写函数解析式并利用解析式的题目,考查分段函数的表达式和分类讨论的数学思想,熟悉待定系数法求一次函数解析式及一次函数的性质是解题的关键.
15、(1)10;30;(2);(3)135米.
【解析】
(1)甲的速度=(300-100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;
(2)根据甲登山的速度以及图象直接写出甲距地面高度y(米)和x(分)之间的函数关系式;
(3)求出乙提速后y和x之间的函数关系式,再与(2)联立组成方程组解答即可.
【详解】
解:(1)甲的速度为:米分,
根据图中信息知道乙一分的时间,走了15米,
那么2分时,将走30米;
故答案为:10;30;
(2);
(3)乙提速后速度为:(米秒),
由,得,
设乙提速后与的函数关系是,
把,代入得,
解得,
乙提速后与的函数关系是,
由,
解得,
(米,
答:登山6.5分钟时,乙追上了甲,此时乙距地的高度为135米.
本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.
16、(1)见解析;(2)甲的成绩比乙稳定;(1)见解析
【解析】
(1)根据中位数、平均数的概念计算;
(2)从平均数和方差相结合看,方差越小的越成绩越好;
(1)根据题意,从平均数,中位数两方面分析即可.
【详解】
解:(1) :(1)通过折线图可知:
甲的环数按从小到大排列是5、6、6、7、7、7、7、8、8、9,
则数据的中位数是(7+7)÷2=7;
的平均数=(2+4+6+7+8+7+8+9+9+10)=7;
乙命中9环以上的次数(包括9环)为1.
填表如下:
(2)因为平均数相同,
所以甲的成绩比乙稳定.
(1)理由1:因为平均数相同,命中9环以上的次数甲比乙少,所以乙的成绩比甲好些;
理由2:因为平均数相同,甲的中位数小于乙的中位数,所以乙的成绩比甲好些;
理由1:甲的成绩在平均数上下波动;而乙处于上升势头,从第4次以后就没有比甲少的情况发生,乙较有潜力.
本题考查了折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了中位数、平均数和方差的概念.在实际生活中常常用它们分析问题.
17、(1)y1=;y2=﹣x+3;(2)点P(0,).
【解析】
将已知点A分别代入反比例函数和一次函数里,即可求出k、b,再将k、b的值代入两个函数里,就可以求出两个函数的解析式;
作A点关于y轴的对称点,并与B连接这条线段即为所求。根据已知求出B点坐标,再求出新线的解析式,最后求出P点坐标.
【详解】
(1)将点A(1,2)代入y1=,得:k=2,
则y1=;
将点A(1,2)代入y2=﹣x+b,得:﹣1+b=2,
解得:b=3,
则y2=﹣x+3;
(2)作点A关于y轴的对称点A′(﹣1,2),连接A′B,交y轴于点P,即为所求,
如图所示:
由得:或,
∴B(2,1),
设A′B所在直线解析式为y=mx+n,
根据题意,得:,
解得:,
则A′B所在直线解析式为y=3x﹣5,
当x=0时,y=,
所以点P(0,).
函数解析式.
18、(1)见解析;(2)1
【解析】
(1)证EF是△ABC的中位线,HG是△DBC的中位线,得出EF∥BC,EF=BC,HG∥BC,HG=BC,则EF∥HG,EF=HG,即可得出结论;
(2)由勾股定理求出BC=10,则EF=GH=BC=5,由三角形中位线定理得出EH= AD=,即可得出答案.
【详解】
证明:(1)∵E、F分别是AB、AC的中点,
∴EF∥BC,EF=BC.
∵H、G分别是DB、DC的中点,
∴HG∥BC,HG=BC.
∴HG=EF,HG∥EF.
∴四边形EHGF是平行四边形.
(2)∵BD⊥CD,BD=8,CD=6,
∴BC===10,
∵E、F、H、G分别是AB、AC、BD、CD的中点,
∴EH=FG=AD=3.5,
EF=GH=BC=5,
∴四边形EHGF的周长=EH+GH+FG+EF=1.
本题考查了平行四边形的判定与性质、三角形中位线定理以及勾股定理;熟练掌握三角形中位线定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据一元一次方程无解,则m+1=0,即可解答.
【详解】
解:∵关于的方程无解,
∴m+1=0,
∴m=−1,
故答案为m=−1.
本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.
20、-1.
【解析】
把点A坐标代入解析式,利用待定系数法进行求解即可.
【详解】
∵正比例函数y=kx的图象经过点(-1,1),
∴1=-k,
解得k=-1,
故答案为:-1.
本题考查了待定系数法,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
21、.
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
22、1.
【解析】
根据正方形的面积可用对角线进行计算解答即可.
【详解】
解:连接AC,BD交于点O,
∵B、E、F、D四点在同一条直线上,
∴E,F在BD上,
∵正方形AECF的面积为50cm2,
∴AC2=50,AC=10cm,
∵菱形ABCD的面积为120cm2,
∴=120,BD=24cm,
所以菱形的边长AB==1cm.
故答案为:1.
此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
23、
【解析】
根据题意可得当时,EF的值最小,利用直角三角形的勾股即可解的EF的长.
【详解】
根据题意可得当时,EF的值最小
,AD=AB=
EF=
本题主要考查最短直线问题,关键在于判断当时,EF的值最小.
二、解答题(本大题共3个小题,共30分)
24、甲每小时做15个零件,乙每小时做10个零件.
【解析】
设甲每小时做x个零件,则乙每小时做x-5个零件,根据“甲做300个所用的时间与乙做200个所用的时间相等”列出方程并解答.
【详解】
设甲每小时做个零件
则乙每小时做个零件
根据题意得
解得:
经检验,是分式方程的解
∴
答:甲每小时做15个零件,乙每小时做10个零件
此题考查分式方程的应用,解题关键在于列出方程
25、(1)见详解;(2)见解析.
【解析】
(1)只用无刻度直尺作图过程如下:①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;
(2)先根据AF=EC,AF∥CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.
【详解】
解:(1)如图所示,EO为∠AEC的角平分线;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AFE=∠FEC,
又∵∠AEF=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∴AF=EC,
∴四边形AECF是平行四边形,
又∵AE=EC,
∴平行四边形AECF是菱形.
本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.
26、 (1)AAS或ASA,
(2)见详解.
(3)2.
【解析】
根据三角形判定的条件即可得到结果;
由已作辅助线,可知,BF∥CD,再根据平行线的性质可得到内错角相等,又有对顶角相等和边相等,故可得证;
连接BF,取BF的中点D,连接DM,DN,MP与CA的延长线相交于点G,由D,M,N分别是BF,BC,EF的中点,可知DM是△ BCF的中位线,DN是△ BEF的中位线,由中位线定理可得DM∥AC,DN∥BE且DN=BE.从而得到∠DMN=∠G,∠DNM=∠BPM,又因为.,可证得△ DMN为等边三角形,所以DN=MN,等量代换后即可得到的值.
【详解】
解:(1)AAS或ASA(详解见(2))
(2)证明:过点作.交的延长线于点,
则∠F=∠D,∠FBE=∠C.
∵点是中点,
∴BE=EC.
在△BEF和△CED中
∴△BEF≌△CED(AAS).
∴BF=CD.
∵,
∴,
∴BF=AB,
∴.
(3) 连接BF,取BF的中点D,连接DM,DN,MP与CA的延长线相交于点G,
∵D,M,N分别是BF,BC,EF的中点,
∴DM是△ BCF的中位线,DN是△ BEF的中位线,
∴DM∥AC,DN∥BE且DN=BE.
∴∠DMN=∠G,∠DNM=∠BPM,
∵且,
∴∠G=∠BPM=60°.
∴∠DNM=∠DMN=60°.
∴△ DMN为等边三角形,
∴MN=DN.
∵DN=BE,
∴=2.
本题主要考查了三角形的全等的判定,等边三角形的判定及性质,三角形的中位线定理及其应用,解题的关键是正确作出辅助线,构造三角形的中位线.
题号
一
二
三
四
五
总分
得分
平均数
方差
中位数
命中9环以上的次数(包括9环)
甲
7
1.2
1
乙
5.4
7.5
平均数
方差
中位数
命中9环以上的次数(包括9环)
甲
7
1.2
7
1
乙
7
5.4
7.5
1
相关试卷
这是一份2024年新疆乌鲁木齐市数学九上开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年新疆兵团八师一四三团一中学数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南京师大附中树人学校数学九上开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。