2024年玉树市重点中学数学九年级第一学期开学学业水平测试试题【含答案】
展开
这是一份2024年玉树市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列条件中,不能判定四边形是正方形的是( )
A.对角线互相垂直且相等的四边形B.一条对角线平分一组对角的矩形
C.对角线相等的菱形D.对角线互相垂直的矩形
2、(4分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为( )
A.B.3C.2D.2
3、(4分)在△ABC中,AB=,BC=,AC=,则( )
A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B
4、(4分)在矩形中,下列结论中正确的是( )
A.B.C.D.
5、(4分)如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()
A.B.C.D.
6、(4分)以下各点中,在一次函数的图像上的是( )
A.(2,4)B.(-1,4)C.(0,5)D.(0,6)
7、(4分)反比例函数y=- 的图象经过点(a,b),(a-1,c),若a 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8
④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形的对角线交于点,点是矩形外的一点,其中.
(1)求证:四边形是菱形;
(2)若,连接交于于点,连接,求证:平分.
15、(8分)计算:
(1)-2
(2)(-)•(+)
16、(8分)已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
17、(10分)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:
(1)补全条形图;
(2)写出这20名学生每人植树量的众数和中位数;
(3)估计这240名学生共植树多少棵?
18、(10分)如图,在平面直角坐标系中,函数的图象经过点和点.过点作轴,垂足为点,过点作轴,垂足为点,连结、、、.点的横坐标为.
(1)求的值.
(2)若的面积为.
①求点的坐标.
②在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,直接写出
符合条件的所有点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)万州区某中学为丰富学生的课余生活,开展了手工制作比赛,如图是该校八年级进入了校决赛的15名学生制作手工作品所需时间(单位:分钟)的统计图,则这15名学生制作手工作品所需时间的中位数是______.
20、(4分)如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,CE=3,则DF_____.
21、(4分)将直线沿y轴向上平移5个单位长度后,所得图象对应的函数关系式为_________.
22、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P'的坐标是_____.
23、(4分)使有意义的x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分),若方程无解,求m的值
25、(10分)A、B 两乡分别由大米 200 吨、300 吨.现将这些大米运至 C、D 两个粮站储存.已知 C 粮站可 储存 240 吨,D 粮站可储存 200 吨,从 A 乡运往 C、D 两处的费用分别为每吨 20 元和 25 元,B 乡 运往 C、D 两处的费用分别为每吨 15 元和 18 元.设 A 乡运往 C 粮站大米 x 吨.A、B 两乡运往两 个粮站的运费分别为 yA、yB 元.
(1)请填写下表,并求出 yA、yB 与 x 的关系式:
(2)试讨论 A、B 乡中,哪一个的运费较少;
(3)若 B 乡比较困难,最多只能承受 4830 元费用,这种情况下,运输方案如何确定才能使总运费 最少?最少的费用是多少?
26、(12分)已知a+b=5,ab=6,求多项式a3b+2a2b2+ab3的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据正方形的判定方法逐项判断即可.
【详解】
对角线互相垂直且相等的四边形不一定是平行四边形,故A不能判定,
由矩形的一条对角线平分一组对角可知该四边形也是菱形,故B能判定,
由菱形的对角线相等可知该四边形也是矩形,故C能判定,
由矩形的对角线互相垂直可知该四边形也是菱形,故D能判定,
故选A.
本题主要考查正方形的判定,掌握正方形既是矩形也是菱形是解题的关键.
2、B
【解析】
试题分析:由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.
解:连接CC1.
在Rt△ABE中,∠BAE=30°,AB=,
∴BE=AB×tan30°=1,AE=2,∠AEB1=∠AEB=60°,
∵四边形ABCD是矩形
∴AD∥BC,
∴∠C1AE=∠AEB=60°,
∴△AEC1为等边三角形,
同理△CC1E也为等边三角形,
∴EC=EC1=AE=2,
∴BC=BE+EC=3,
故选B.
3、A
【解析】
试题解析:∵在△ABC中,AB=,BC=,AC=,
∴
∴∠A=90°
故选A.
4、C
【解析】
根据相等向量及向量长度的概念逐一进行判断即可.
【详解】
相等向量:长度相等且方向相同的两个向量 .
A. ,故该选项错误;
B. ,但方向不同,故该选项错误;
C. 根据矩形的性质可知,对角线互相平分且相等,所以,故该选项正确;
D. ,故该选项错误;
故选:C.
本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.
5、D
【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
【详解】
∵四边形ABCD是菱形,
∴CO=AC=3,BO=BD=,AO⊥BO,
∴.
∴.
又∵,
∴BC·AE=24,
即.
故选D.
点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
6、D
【解析】
分别将各选项中的点代入一次函数解析式进行验证.
【详解】
A.当x=2时,,故点(2,4)不在一次函数图像上;
B.当x=-1时,,故点(-1,4)不在一次函数图像上;
C.当x=0时,,故点(0,5)不在一次函数图像上;
D.当x=0时,,故点(0,6)在一次函数图像上;
故选D.
本题考查判断点是否在函数图像上,将点坐标代入函数解析式验证是解题的关键.
7、A
【解析】
根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.
【详解】
解:∵k=-3<0,则y随x的增大而增大.
又∵0>a>a-1,则b>c.
故选A.
本题考查了反比例函数图象的性质,关键是掌握反比例函数的性质:
(1)反比例函数y(k≠0)的图象是双曲线;
(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;
(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
8、C
【解析】
根据二次根式的定义求出a的范围,再得出答案即可.
【详解】
要使有意义,必须a-2≥0,
即a≥2,
所以a能取到的最小值是2,
故选C.
本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
由题意将点A(2,1)和B(m,-2),代入y=kx+3,即可求解得到m的值.
【详解】
解:∵直线y=kx+3经过点A(2,1)和B(m,-2),
∴,解得,
∴.
故答案为:-1.
本题考查一次函数图象性质,注意掌握点过一次函数图象即有点坐标满足一次函数解析式.
10、4
【解析】
利用面积公式列出关系式,将已知面积与边长代入即可求出高.
【详解】
解:根据题意得:÷×2=4.
此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.
11、
【解析】
不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.
【详解】
解:不等式的解集是.
故答案为:.
本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、2:5
【解析】
把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用xD=xB=2易求D点坐标.又已知yE=yD=2可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.
【详解】
解:由 x+=0,得x=-1.
∴A点坐标为(-1,0),
由-2x+16=0,得x=2.
∴B点坐标为(2,0),
∴AB=2-(-1)=3.
由 ,解得,
∴C点的坐标为(5,6),
∴S△ABC=AB•6=×3×6=4.
∵点D在l1上且xD=xB=2,
∴yD=×2+=2,
∴D点坐标为(2,2),
又∵点E在l2上且yE=yD=2,
∴-2xE+16=2,
∴xE=1,
∴E点坐标为(1,2),
∴DE=2-1=1,EF=2.
∴矩形面积为:1×2=32,
∴S矩形DEFG:S△ABC=32:4=2:5.
故答案为:2:5.
此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.
13、①③④
【解析】
逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.
解:①根据题意列解方程组,
解得,;
∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;
②当x>3时,y1在y2的上方,故y1>y2,错误;
③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9-1=8,正确;
④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,
y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.
因此①③④正确,②错误.
故答案为①③④.
本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析.
【解析】
(1)由矩形可知OA=OB,由AE∥BD,BE∥AC,即可得出结论;
(2)利用矩形和菱形的性质先证△COF≌△EBF,得到OF=BF,再求得∠AOB=60°,利用有一个角是60°的等腰三角形是等边三角形,得到△AOB为等边三角形,最后利用三线合一的性质得到AF平分∠BAO.
【详解】
证明:(1)∵四边形是矩形,
∴则,
即∴
又∵,
∴四边形是平行四边形,
∴四边形是菱形;
(2)∵四边形是菱形,
∴,
∴,
∵四边形是矩形,
∴,
∴,
在和中
∴,
∴,
∵,
∴,
∴,
∵,
∴是等边三角形,
∵,
∴平分.
本题考查了矩形的性质,菱形的判定与性质,等边三角形的判定,三线合一的性质.
15、(1);(2)﹣1.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用平方差公式进行计算即可.
【详解】
(1)原式
=2
;
(2)原式=2﹣5
=﹣1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
16、y=x+
【解析】
试题分析:根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.
解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,
∴k=
∴y与x的函数关系式为.
考点:待定系数法求一次函数解析式.
17、(1)图形见解析
(2)众数为5,中位数是5;
(3)估计这240名学生共植树1272棵.
【解析】
(1)先求出D类的人数,然后补全统计图即可;
(2)由众数的定义解答,根据中位数的定义,因为是20个人,因此找出第10人和第11人植树的棵树,求出平均数即为中位数;
(3)求出20人植树的平均棵树,然后乘以总人数240计算即可得解.
【详解】
(1)D类的人数为:20﹣4﹣8﹣6=20﹣18=2人,
补全统计图如图所示;
(2)由图可知,植树5棵的人数最多,是8人,
所以,众数为5,
按照植树的棵树从少到多排列,第10人与第11人都是植5棵数,
所以,中位数是5;
(3)(棵),
240×5.3=1272(棵).
答:估计这240名学生共植树1272棵.
考点:1、条形统计图;2、用样本估计总体;3、中位数;4、众数
18、(1)4;(2)①点的坐标为.②、、
【解析】
(1)利用待定系数法将A点代入,即可求函数解析式的k值;
(2)用三角形ABD的面积为4,列方程,即可求出a的值,可得点的坐标;
(3)E的位置分三种情况分析,由平行四边形对边平行的关系,用平移规律求对应点的坐标.
【详解】
(1)函数的图象经过点,
(2)①如图,设AC与BD交与M,
点的横坐标为,点在的图象上,
点的坐标为.
∵轴,轴,
,.
∵的面积为,
.
.
.
点的坐标为.
②∵C(1,0)
∴AC=4
当以ACZ作为平行四边形的边时,BE=AC=4
∴
∴
∴、
当AC作为平行四边形的对角线时,AC中点为
∴BE中点为(1,2)设E(x,y)
∵点的坐标为
则
解得:
∴
综上所述:在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,符合条件的所有点的坐标为:、、
故答案为、、
本题考察了利用待定系数法求反比例函数,以及利用三角形面积列方程求点的坐标和平行四边形的平移规律求点的坐标,解题的关键是会利用待定系数法求解析式,会用平移来求点的坐标.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、14
【解析】
根据中位数的意义,排序找中间位置的数或中间两个数的平均数即可.
【详解】
15名学生制作手工作品所需时间中排在第8位的是14分钟,因此中位数是14分钟
故答案为14.
本题考查中位数的概念和求法,将数据从小到大排序找中间位置的数或中间两个数的平均数,理解意义掌握方法是关键.
20、=3
【解析】
分析:根据直角三角形的斜边上的中线等于斜边的一半,可得AB的长,然后根据三角形的中位线的性质,求出DF的长.
详解:∵在△ABC中,∠ACB=90°,E为AB的中点,CE=3
∴AB=6
∵D、F为AC、BC的中点
∴DF=AB=3.
故答案为3.
点睛:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.
21、
【解析】
分析:直接根据“上加下减”的原则进行解答即可.
详解:由“上加下减”的原则可知,直线y=-2x﹣2向上平移5个单位,所得直线解析式是:y=-2x﹣2+5,即y=-2x+1.
故答案为:y=-2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
22、(1,5)
【解析】
根据向右平移横坐标加,向上平移纵坐标加求解即可.
【详解】
解:∵点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P',
∴点P′的横坐标为-2+3=1,
纵坐标为1+4=5,
∴点P′的坐标是(1,5).
故答案为(1,5).
本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
23、x≥2
【解析】
根据题意可得2x﹣4≥0,然后求解关于x的一元一次不等式即可.
【详解】
解:∵有意义,
∴2x﹣4≥0,
解得:x≥2.
故答案为x≥2.
本题考查了算术平方根有意义,解一元一次不等式,解此题的关键在于熟练掌握其知识点.
二、解答题(本大题共3个小题,共30分)
24、m的值为-1或-6或
【解析】
分式方程去分母转化为整式方程,整理后根据一元一次方程无解条件求出m的值;由分式方程无解求出x的值,代入整式方程求出m的值即可.
【详解】
解:方程两边同时乘以(x+2)(x-1)得:
整理得:
当m+1=0时,该方程无解,此时m= -1;
当m+1≠0时,则原方程有增根,原方程无解,
∵原分式方程有增根,
∴(x+2)(x-1)=0,
解得:x=-2或x=1,
当x=-2时,;当x=1时,m= -6
∴ m的值为-1或-6或
此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.
25、(1)表见解析;yA=20x+25×(200−x)=−5x+5000(0⩽x⩽200);yB=15×(240−x)+18×(x+60)=3x+4680(0⩽x⩽200);(2)当x40时,A乡运费少;(3)当x=50时,总运费最低,最低费用为9580元.
【解析】
(1)结合已知完善表格,再根据运费=运输单价×数量,得出yA、yB与x的关系式;
(2)令yA=yB,找出二者运费相等的x,以此为界分成三种情况;
(3)由B乡运费最多为4830元,找出x的取值范围,再根据yA+yB的单调性,即可得知当x取什么值时,总运费最低.
【详解】
(1)根据已知补充表格如下:
A乡运往两个粮站的运费yA=20x+25×(200−x)=−5x+5000(0⩽x⩽200);
B乡运往两个粮站的运费yB=15×(240−x)+18×(x+60)=3x+4680(0⩽x⩽200).
(2)令yA=yB,即−5x+5000=3x+4680,
解得:x=40.
故当x40时,A乡运费少.
(3)令yB⩽4830,即3x+4680⩽4830,
解得:x⩽50.
总运费y=yA+yB=−5x+5000+3x+4680=−2x+9680,
∵−2
相关试卷
这是一份2024年渭南市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省青岛市崂山区部分中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市紫石中学数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。