2024年云南省红河哈尼族彝族自治州九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开
这是一份2024年云南省红河哈尼族彝族自治州九年级数学第一学期开学教学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(▲)
A.-3B.1C.5D.8
2、(4分)二次根式中的x的取值范围是( )
A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2
3、(4分)某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:
根据表中的信息判断,下列结论中错误的是( )
A.该班一共有45名同学
B.该班学生这次考试成绩的众数是28
C.该班学生这次考试成绩的平均数是25
D.该班学生这次考试成绩的中位数是28
4、(4分)下列因式分解正确的是( )
A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2
C.x2﹣1=(x﹣1)2D.x2﹣x+2=x(x﹣1)+2
5、(4分)下列各曲线表示的与的关系中,不是的函数的是( )
A.B.
C.D.
6、(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=4,过点C作CE⊥BD交BD的延长线于E,则CE的长为( )
A.B.2C.3D.2
7、(4分)如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是( )
A.S△DEF=S△ABC
B.△DEF≌△FAD≌△EDB≌△CFE
C.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形
D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长
8、(4分)如图,正方形的对角线是菱形的一边,则等于( )
A.135°B.45°C.22.5°D.30°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:m2-9m=______.
10、(4分)已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.
11、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为 米.
12、(4分)如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5 cm,则BD=________.
13、(4分)如图,正方形的边长为5,,连结,则线段的长为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1) 分别写出当0≤x≤100和x>100时,y与x的函数关系式
(2) 利用函数关系式,说明电力公司采取的收费标准
(3) 若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?
15、(8分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
(1)试销时该品种苹果的进货价是每千克多少元?
(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?
16、(8分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.
(1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;
(2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;
(3)如图3,当点在线段的延长线上,且时,求线段的长.
17、(10分) (1)因式分解:; (2)计算:.
18、(10分)点向__________平移2个单位后,所对应的点的坐标是.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现在剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形一腰上的的高为_____________.
20、(4分)如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.
21、(4分)已知∠ABC=60°,点D是其角平分线上一点,BD=CD=6,DE//AB交BC于点E.若在射线BA上存在点F,使,请写出相应的BF的长:BF=_________
22、(4分)若一次函数y=kx+1(k为常数,0)的图象经过第一、二、四象限,则k的取值范围是_______________.
23、(4分)如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).
二、解答题(本大题共3个小题,共30分)
24、(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为、、)
25、(10分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图1,直线,点,在直线上,点,在直线上,若,则四边形是半对角四边形.
(1)如图1,已知,,,若直线,之间的距离为,则AB的长是____,CD的长是______;
(2)如图2,点是矩形的边上一点,,.若四边形为半对角四边形,求的长;
(3)如图3,以的顶点为坐标原点,边所在直线为轴,对角线所在直线为轴,建立平面直角坐标系.点是边上一点,满足.
①求证:四边形是半对角四边形;
②当,时,将四边形向右平移个单位后,恰有两个顶点落在反比例函数的图象上,求的值.
26、(12分)在一张足够大的纸板上截取一个面积为的矩形纸板,如图,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形,如图,设小正方形的边长为厘米.、
(1)若矩形纸板的一个边长为.
①当纸盒的底面积为时,求的值;
②求纸盒的侧面积的最大值;
(2)当,且侧面积与底面积之比为时,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
当点C横坐标为-3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选D.
2、D
【解析】
根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.
【详解】
由题意,得
2x+4≥0,
解得x≥-2,
故选D.
本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
3、C
【解析】
根据总数,众数,中位数的定义即可一一判断;
【详解】
解:该班一共有:1+5+4+10+15+10=45(人),众数是28分,中位数为28分,
故A、B、D正确,C错误,
故选:C.
本题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
4、A
【解析】
由题意根据因式分解的意义,即可得答案判断选项.
【详解】
解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故A符合题意;
B、x2+2x+1=(x+1)2,故B不符合题意;
C、x2﹣1=(x+1)(x﹣1),故C不符合题意;
D、不能分解,故D不符合题意;
故选:A.
本题考查因式分解的意义,一提,二套,三检查,注意分解要彻底.
5、D
【解析】
根据是函数的定义即可求解.
【详解】
若是的函数,则一个自变量x对应一个因变量y,故D错误.
此题主要考查函数图像的识别,解题的关键是熟知函数的定义.
6、B
【解析】
延长CE与BA延长线交于点F,首先证明△BAD≌△CAF,根据全等三角形的性质可得BD=CF,再证明△BEF≌△BCE可得CE=EF,进而可得CE=BD,即可得出结果.
【详解】
证明:延长CE与BA延长线交于点F,
∵∠BAC=90°,CE⊥BD,
∴∠BAC=∠DEC,
∵∠ADB=∠CDE,
∴∠ABD=∠DCE,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(ASA),
∴BD=CF,
∵BD平分∠ABC,CE⊥DB,
∴∠FBE=∠CBE,
在△BEF和△BCE中,
,
∴△BEF≌△BCE(AAS),
∴CE=EF,
∴DB=2CE,即CE=BD=×4=2,
故选:B.
本题考查了全等三角形的判定与性质、角平分线定义,熟练掌握全等三角形的判定方法,全等三角形对应边相等是解题的关
7、D
【解析】
根据中位线定理可证DE∥AC,DF∥BC,EF∥AB,即可得四边形ADEF,四边形DECF,四边形BDFE是平行四边形.即可判断各选项是否正确.
【详解】
连接DF
∵点D,E,F分别是AB,BC,AC的中点
∴DE∥AC,DF∥BC,EF∥AB
∴四边形ADEF,四边形DECF,四边形BDFE是平行四边形
∴△ADF≌△DEF,△BDE≌△DEF,△CEF≌△DEF
∴△DEF≌△ADF≌△BDE≌△CEF
∴S△ADF=S△BDE=S△DEF=S△CEF.
∴S△DEF=S△ABC.
故①②③说法正确
∵四边形ADEF的周长为2(AD+DE)
四边形BDFE的周长为2(BD+DF)
且AD=BD,DE≠DF,
∴四边形ADEF的周长≠四边形BDFE的周长
故④说法错误
故选:D.
本题考查了平行四边形的判定,三角形中位线定理,平行四边形的性质,熟练运用中位线定理解决问题是本题的关键.
8、C
【解析】
根据正方形、菱形的性质解答即可.
【详解】
∵AC是正方形的对角线,
∴∠BAC=×90°=45°,
∵AF是菱形AEFC的对角线,
∴∠FAB=∠BAC=×45°=22.5°.
故选C.
本题考查了正方形、菱形的性质,熟知正方形、菱形的一条对角线平分一组对角的性质是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m(m-9)
【解析】
直接提取公因式m即可.
【详解】
原式=m(m-9).
故答案为:m(m-9).
此题主要考查了提公因式法分解因式,关键是正确找出公因式.
10、4.1
【解析】
分别假设众数为1、1、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.
【详解】
若众数为1,则数据为1、1、1、7,此时中位数为3,不符合题意;
若众数为1,则数据为1、1、1、7,中位数为1,符合题意,
此时平均数为=4.1;
若众数为7,则数据为1、1、7、7,中位数为6,不符合题意;
故答案为:4.1.
本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.
11、1
【解析】
试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
解:由题意可得:AB=200m,∠A=30°,
则BC=AB=1(m).
故答案为:1.
12、矩形 5cm
【解析】
试题解析:∵AO=OC,BO=OD,
∴四边形ABCD是平行四边形.
∵∠ABC=90°,
∴四边形ABCD是矩形.
∴AC=BD
∵AC=5cm
∴BD=5cm
13、
【解析】
延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.
【详解】
解:如图,延长BG交CH于点E,
∵正方形的边长为5,,
∴AG2+BG2=AB2,
∴∠AGB=90°,
在△ABG和△CDH中,
∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
∴△ABG≌△BCE(ASA),
∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,
∴GE=BE-BG=4-3=1,
同理可得HE=1,
在RT△GHE中,
故答案为:
本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)
(2)用户月用电量在0度到100度之间时,每度电的收费标准是0.1元,超出100度时,每度电的收费标准是0.80元.
(3)用户用电62度时,用户应缴费40. 3元,若用户月缴费105元时,该用户该月用了150度电.
【解析】
试题分析:由图象可知,当0≤x≤100时,可设该正比例函数解析式为y=kx,当x>100时,可设该一次函数解析式为y=kx+b,进而利用待定系数法求出函数表达式;
根据图象,月用电量在0度到100度之间时,求出每度电的收费的标准,月用电量超出100度时,求出每度电的收费标准;
先根据自变量的值确定出对应的函数表达式,再代入求证即可.
试题解析:(1)设当0≤x≤100时,函数解析式为y=kx(k≠0).
将(100,1)代入y=kx得:100k=1,解得k=0.1.
则y=0.1x(0≤x≤100).
设当x>100时,函数解析式为y=ax+b(a≠0).
将(100,1),(130,89)代入y=kx+b得:
,解得:.则y=0.8x-15(x>100)
所以y与x的函数关系式为;
(2)根据(1)的函数关系式得:
月用电量在0度到100度之间时,每度电的收费的标准是0.1元;月用电量超出100度时,每度电的收费标准是0.8元;
(3)用户月用电62度时,62×0.1=40.3,用户应缴费40.3元,
用户月缴费105元时,即0.8x-15=105,解得x=150,该用户该月用了150度电.
点睛:本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力.列一次方程组解应用题的步骤:(1)审清题意,明确问题中的已知量、未知量以及各种量之间的关系;(2)设未知数,有直接设未知数和间接设未知数两种,无论怎样设未知数,一定要注意题目的未知量必须能用所设的未知数表示出来;(3)列方程组,找出题目中的相等关系,再根据这些相等关系列出含有
未知数的等式组成方程组.这是列方程组解应用题的重要步骤;(4)解方程组,并对求出的解进行检验,看是否符合题目中的实际意义;(5)求出答案.
15、(1)试销时该品种苹果的进货价是每千克5元;(2)商场在两次苹果销售中共盈利4160元.
【解析】
解:(1) 设试销时该品种苹果的进货价是每千克x元
解得x= 5
经检验:x= 5是原方程的解,并满足题意
答:试销时该品种苹果的进货价是每千克5元.
(2) 两次购进苹果总重为:千克
共盈利:元
答:共盈利4160元.
16、(1);(2)见解析;(3).
【解析】
(1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;
(2)证△BAE≌△CAF即可得;
(3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.
【详解】
解:(1)如图1,连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∵E是BC中点,
∴AE⊥BC,BE=BC=AB
在Rt△ABE中,AE=BEtanB=BE;
(2)证明:连接,如图2中,
∵四边形是菱形,,
∴与都是等边三角形,
∴,.
∵,
∴,
在和中,
,
∴.
∴.
(3)解:连接,过点作于点,如图3所示,
∵,,
∴.
在中,
∵,,
∴,
∴.
在中,
∵,,
∴,
∴.
由(2)得,,
则,
∵,
∴,
可得,
∴,
∴.
考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.
17、 (1);(2)m
【解析】
(1)先对原式提取公因式x,再用完全平方差公式分解即可得到答案;
(2)先对括号的式子进行通分,再把括号外的式子的分母用平方差公式分解,再进行约分化简即可得到答案.
【详解】
解:(1) ==.
(2)原式=
=
=
=.
本题主要考查了因式分解和分式的混合运算.掌握用公式法分解因式以及提取公因式法分解因式是解题的关键.
18、左
【解析】
找到横纵坐标的变化情况,根据坐标的平移变换进行分析即可.
【详解】
解:纵坐标没有变化,
横坐标的变化为:,说明向左平移了2个单位长度.
故答案为:左.
本题考查了坐标与图形变化-平移,用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4或或
【解析】
分三种情况进行讨论:(1)△AEF为等腰直角三角形,得出AE上的高为AF=4;
(2)利用勾股定理求出AE边上的高BF即可;
(3)求出AE边上的高DF即可
【详解】
解:分三种情况:
(1)当AE=AF=4时,
如图1所示:
△AEF的腰AE上的高为AF=4;
(2)当AE=EF=4时,
如图2所示:
则BE=5-4=1,
BF=;
(3)当AE=EF=4时,
如图3所示:
则DE=7-4=3,
DF=,
故答案为4或或.
本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.
20、1或3
【解析】
用t表示出AE和CF,当AE=CF时,以点、、、为顶点的四边形是平行四边形,
据此求解即可.
【详解】
解:设运动时间为t,则AE=t cm,BF=2t cm,
∵是等边三角形,cm,
∴BC=3 cm,
∴CF= ,
∵AG∥BC,
∴AE∥CF,
∴当AE=CF时,以点、、、为顶点的四边形是平行四边形,
∴=t,
∴2t-3=t或3-2t=t,
∴t=3或t=1,
故答案是:1或3.
本题考查了平行四边形的判定,平行四边形有很多判定定理,结合题目条件找到所缺的合适的判定条件是解题的关键.
21、2或4.
【解析】
过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.
【详解】
如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=×60°=30°,
∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF2=360°-150°-60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,
,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×60°=30°,
又∵BD=6,
∴BE=×6÷cs30°=3÷=2,
∴BF1=BF2=BF1+F1F2=2+2=4,
故BF的长为2或4.
故答案为:2或4.
本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.
22、k<1
【解析】
根据一次函数图象所经过的象限确定k的符号.
【详解】
解:∵一次函数y=kx+1(k为常数,k≠1)的图象经过第一、二、四象限,
∴k<1.
故填:k<1.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
23、①②④
【解析】
根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵根据折叠可得∠D=∠NMA,
∴∠B=∠NMA,
∴MN∥BC;①正确;
∵四边形ABCD是平行四边形,
∴DN∥AM,AD∥BC,
∵MN∥BC,
∴AD∥MN,
∴四边形AMND是平行四边形,
根据折叠可得AM=DA,
∴四边形AMND为菱形,
∴MN=AM;②④正确;
没有条件证出∠B=90°,④错误;
故答案为①②④.
本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)甲运动员测试成绩的众数和中位数都是7分;(2)选乙运动员更合适.
【解析】
(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;
(2)易知、、),根据题意不难判断;
【详解】
(1)甲运动员测试成绩的众数和中位数都是7分,
(2)经计算(分),(分),(分)
∵,
∴选乙运动员更合适.
此题考查众数和中位数,方差,折线统计图,解题关键在于看懂图中数据
25、(1)2;;(2)AD=3;(3)①证明见解析;②的值为为或.
【解析】
(1)过点作于点,过点作于点,通过解直角三角形可求出,的长;
(2)根据半对角四边形的定义可得出,进而可得出,由等角对等边可得出,结合即可求出的长;
(3)①由平行四边形的性质可得出,,进而可得出,根据等腰三角形的性质及三角形外角的性质可得出,再结合半对角四边形的定义即可证出四边形是半对角四边形;
②由平行四边形的性质结合,可得出点,,的坐标,分点,落在反比例函数图象上及点,落在反比例函数图象上两种情况考虑:利用平移的性质及反比例函数图象上点的坐标特征可得出关于的一元一次方程,解之即可得出值,再利用反比例函数图象上点的坐标特征可求出值;同可求出值.综上,此题得解.
【详解】
解:(1)如图1,过点作于点,过点作于点.
,
,.
在中,;
在中,.
故答案为:2;.
(2)如图2,
四边形为半对角四边形,
,
,
,
.
(3)如图3,
①证明四边形为平行四边形,
,,
,
.
又,
四边形是半对角四边形;
②由题意,可知:点的坐标为,,点的坐标为,,点的坐标为.
当点,向右平移个单位后落在反比例函数的图象上时,,
解得:,
;
当点,向右平移个单位后落在反比例函数的图象上时,
,
解得:,
.
综上所述:的值为为或.
本题考查了解直角三角形、等腰三角形的性质、三角形外角的性质、平行四边形的性质、反比例函数图象上点的坐标特征以及解一元一次方程,解题的关键是:(1)通过解直角三角形求出,的长;(2)利用半对角四边形的定义及矩形的性质,求出;(3)①利用等腰三角形的性质、三角形外角的性质以及平行四边形的性质,找出;②分点,落在反比例函数图象上和点,落在反比例函数图象上两种情况,求出的值.
26、(1)①12;②当时,;(2)1
【解析】
(1)①根据题意列方程求解即可;
②一边长为90cm,则另一边长为40cm,列出侧面积的函数解析式,配方可得最值;
(2)由EH:EF=7:2,设EF=2m、EH=7m,根据侧面积与底面积之比为9:7建立方程,可得m=x,由矩形纸板面积得出x的值.
【详解】
(1)①矩形纸板的一边长为,
矩形纸板的另一边长为,
(舍去)
②
,
当时,.
(2)设EF=2m,则EH=7m,
则侧面积为2(7mx+2mx)=18mx,底面积为7m•2m=14m2,
由题意,得18mx:14m2=9:7,
∴m=x.
则AD=7x+2x=9x,AB=2x+2x=4x
由4x•9x=3600,且x>0,
∴x=1.
本题主要考查二次函数的应用,根据矩形的面积公式列出面积的函数表达式或方程是解题的关键.
题号
一
二
三
四
五
总分
得分
成绩(分)
20
22
24
26
28
30
人数(人)
1
5
4
10
15
10
测试序号
1
2
3
4
5
6
7
8
9
10
成绩(分)
7
6
8
7
7
5
8
7
8
7
相关试卷
这是一份2024年山东省兰陵县九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东菏泽巨野县数学九年级第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年嘉兴市秀洲区数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。