搜索
    上传资料 赚现金
    英语朗读宝

    2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题【含答案】

    2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题【含答案】第1页
    2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题【含答案】第2页
    2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题【含答案】

    展开

    这是一份2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果代数式有意义,那么x的取值范围是( )
    A.x≥0B.x≠1C.x>1D.x≥0且 x≠1
    2、(4分)多项式 x2  4 因式分解的结果是( )
    A.x  22 B.x  22 C.x  2x  2 D.x  4x  4
    3、(4分)如图,设线段AC=1.过点C作CD⊥AC,并且使CD=AC:连结AD,以点D为圆心,DC的长为半径画弧,交AD于点E;再以点A为圆心,AE的长为半径画弧,交AC于点B,则AB的长为( )
    A.B.C.D.
    4、(4分)将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是( )
    A.,1B.-,1C.-,-1D.,-1
    5、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是( )
    A.452名学生B.抽取的50名学生
    C.452名学生的课外阅读情况D.抽取的50名学生的课外阅读情况
    6、(4分)关于的一元二次方程有实数根,则的最大整数值是( )
    A.1B.0C.-1D.不能确定
    7、(4分)如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第个图形中小菱形的个数用含有的式子表示为( )
    A.B.C.D.
    8、(4分)若在实数范围内有意义,则x的取值范围是( )
    A.x>-4B.x≥-4C.x>-4且x≠1D.x≥-4且x≠-1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知,,则的值为___________.
    10、(4分)如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.
    11、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBn∁nCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.
    12、(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为 .
    13、(4分)不等式3x+1<-2的解集是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值
    15、(8分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣3,﹣3),C(﹣1,﹣3).将△ABC先向右平移3个单位,再向上平移4个单位得到△A1B1C1,在坐标系中画出△A1B1C1,并写出△A1B1C1各顶点的坐标.
    16、(8分)如图①,四边形和四边形都是正方形,且,,正方形固定,将正方形绕点顺时针旋转角().
    (1)如图②,连接、,相交于点,请判断和是否相等?并说明理由;
    (2)如图②,连接,在旋转过程中,当为直角三角形时,请直接写出旋转角的度数;
    (3)如图③,点为边的中点,连接、、,在正方形的旋转过程中,的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.
    17、(10分)如图,在平面直角坐标系中,一次函数图像经过点,且与轴相交于点,与正比例函数的图像相交于点,点的横坐标为.
    (1)求的值;
    (2)请直接写出不等式的解集.
    18、(10分)如图,BD是矩形ABCD的一条对角线.
    (1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)
    (2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)比较大小:32_____23.
    20、(4分)如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.
    21、(4分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.
    22、(4分)如图:已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴,轴分别交于点C、点D,若DB=DC,则直线CD的函数表达式为__________.
    23、(4分)关于的x方程=1的解是正数,则m的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)计算(1)(﹣)0++|2﹣|
    (2)(﹣)÷+(2+)(2﹣)
    25、(10分)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;
    (2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.
    26、(12分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.
    (1)分别求出线段AB,CD的长度;
    (2)在图中画出线段EF,使得EF的长为,用AB、CD、EF三条线段能否构成直角三角形,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据二次根式中被开方数是非负数,分式分母不为零列出不等式即可求出答案.
    【详解】
    根据题意可知,解得x>1,
    故答案选C.
    本题考查的是二次根式和分式存在有意义的条件,熟知该知识点是解题的关键.
    2、C
    【解析】分析:根据公式a2﹣b2=(a+b)(a﹣b),进行计算即可.
    详解:x2﹣4=(x+2)(x﹣2).
    故选C.
    点睛:本题主要考查对因式分解﹣平方差公式的理解和掌握,能熟练地运用公式分解因式是解答此题的关键.
    3、B
    【解析】
    根据勾股定理求得AD的长度,则AB=AE=AD-CD.
    【详解】
    解:如图,AC=1,CD= AC=,CD⊥AC,
    ∴由勾股定理,得
    AD=,
    又∵DE=DC=,
    ∴AB=AE=AD-CD=-=,
    故选:B.
    本题考查了勾股定理.根据勾股定理求得斜边AD的长度是解题的关键.
    4、D
    【解析】
    分析:
    由已知条件易得,直线过点(0,1),结合直线是由直线向右平移4个单位长度得到的可知直线必过点(4,1),把和点(4,1)代入中解出b的值即可.
    详解:
    ∵在直线中,当时,,
    ∴直线过点(0,1),
    又∵直线是由直线向右平移4个单位长度得到的,
    ∴,且直线过点(4,1),
    ∴,解得:,
    ∴.
    故选D.
    点睛:“由直线过点(0,1)结合已知条件得到,直线必过点(4,1)”是解答本题的关键.
    5、D
    【解析】
    根据样本是总体中所抽取的一部分个体,可得答案.
    【详解】
    解:为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计,在这个问题中,样本是从中抽取的50名学生的课外阅读情况.
    故选:D.
    本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
    6、C
    【解析】
    利用一元二次方程的定义和判别式的意义得到a≠0且△=(﹣1)2﹣4a≥0,求出a的范围后对各选项进行判断.
    【详解】
    解:根据题意得a≠0且△=(﹣1)2﹣4a≥0,
    解得a≤且a≠0,
    所以a的最大整数值是﹣1.
    故选:C.
    本题考查了一元二次方程的定义和根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    7、B
    【解析】
    根据图形的变化规律即可求出第个图形中小菱形的个数.
    【详解】
    根据第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,每次增加3个菱形,故第个图形中小菱形的个数为1+3(n-1)=个,
    故选B.
    此题主要考查图形的规律探索,解题的关键是根据图形的变化找到规律进行求解.
    8、D
    【解析】
    直接利用二次根式有意义的条件结合分式有意义的条件进行求解即可得.
    【详解】
    若在实数范围内有意义,
    则x+4≥0且x+1≠0,
    解得:x≥-4且x≠-1,
    故选D.
    本题考查了二次根式有意义的条件和分式有意义的条件,正确把握相关知识是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    将写成(x+y)(x-y),然后利用整体代入求值即可.
    【详解】
    解:∵,,
    ∴,
    故答案为:1.
    本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.
    10、6
    【解析】
    由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,
    ∴∠APO=∠COD,
    在△AOP与△CDO中,

    ∴△AOP≌△CDO(AAS),
    ∴AP=CO=AC﹣AO=9﹣3=6.
    故答案为6.
    11、(7,4)(2n﹣1,2n﹣1).
    【解析】
    根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点Bn的坐标.
    【详解】
    当x=0时,y=x+1=1,
    ∴点A1的坐标为(0,1).
    ∵四边形A1B1C1O为正方形,
    ∴点B1的坐标为(1,1).
    当x=1时,y=x+1=2,
    ∴点A2的坐标为(1,2).
    ∵四边形A2B2C2C1为正方形,
    ∴点B2的坐标为(3,2).
    同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,
    ∴点Bn的坐标为(2n﹣1,2n﹣1).
    故答案为:(7,4), (2n﹣1,2n﹣1)
    本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点Bn的坐标是解题的关键.
    12、1.
    【解析】
    ∵,
    ∴=0,b-2=0,解得a=3,b=2.
    ∵直角三角形的两直角边长为a、b,
    ∴该直角三角形的斜边长=.
    13、.
    【解析】
    试题分析:3x+1<-2,3x<-3,x<-1.故答案为x<-1.
    考点:一元一次不等式的解法.
    三、解答题(本大题共5个小题,共48分)
    14、3.
    【解析】
    先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.
    【详解】
    解:原式===.
    其中,即x≠﹣1、0、1.
    又∵﹣2<x≤2且x为整数,∴x=2.
    将x=2代入中得:==3.
    考点:分式的化简求值.
    15、A1(1,3);B1(0,1);C1(2,1)
    【解析】
    把三角形ABC的各顶点先向右平移3个单位,再向上平移4个单位得到平移后的个点,顺次链接平移后的各顶点即为平移后的三角形,根据个点所在象限的符号和距坐标轴的距离即可得各点的坐标.
    【详解】
    解:△A1B1C1如图所示;
    A1(1,3);B1(0,1);C1(2,1).
    本题考查了作图-平移变化,掌握作图-平移变化是解答本题的关键.
    16、(1)相等,理由见解析;(2)和;(3)存在,最大值为.
    【解析】
    (1)由四边形ABCD和四边形CEFG都是正方形知BC=CD,CF=CE,∠BCD=∠GCE=90°,从而得∠BCG=∠DCE,证△BCG≌△DCE得BG=DE;
    (2)分两种情况求解可得;
    (3)由,知当点P到BD的距离最远时,△BDP的面积最大,作PH⊥BD,连接CH、CP,则PH≤CH+CP,当P、C、H三点共线时,PH最大,此时△BDP的面积最大,据此求解可得.
    【详解】
    (1)证明:相等
    ∵四边形和四边形都是正方形,
    ∴,,,
    ∴,即,
    ∴;
    ∴BG=DE
    (2)如图1,∠ACG=90°时,旋转角;
    如图2,当∠ACG=90°时,旋转角;
    综上所述,旋转角的度数为45°或225°;
    (3)存在
    ∵如图3,在正方形中,,
    ∴,
    ∴当点到的距离最远时,的面积最大,
    作,连接,,则
    当三点共线时,最大,此时的面积最大.
    ∵,点为的中点,

    此时,,
    ∴.
    本题是四边形的综合问题,解题的关键是掌握正方形的性质、旋转的性质、全等三角形的判定与性质等知识点.
    17、(1);(2)
    【解析】
    根据题意先求得点C的坐标,再将点A、C代入即可解答.
    由,得,根据点C的坐标为(1,3)即可得出答案.
    【详解】
    解:(1)当时,,
    点的坐标为.
    将代入,
    得:
    解得:;
    (2)由,得,
    点的横坐标为,;
    本题考查一次函数,熟练掌握运算法则是解题关键.
    18、(1)作图见解析;(2)证明见解析.
    【解析】
    (1)分别以B、D为圆心,以大于 的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得EO=FO,进而利用菱形的判定方法得出结论.
    本题解析: (1)如图所示:EF即为所求;
    (2)证明:如图所示:∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,
    ∵EF垂直平分线段BD,∴BO=DO,
    在△DEO和三角形BFO中,

    ∴△DEO≌△BFO(ASA),∴EO=FO,
    ∴四边形DEBF是平行四边形,又∵EF⊥BD,
    ∴四边形DEBF是菱形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、>
    【解析】
    先计算乘方,再根据有理数的大小比较的方法进行比较即可.
    【详解】
    ∵32=9,23=8,9>8,
    ∴32>23.
    故答案为>.
    本题考查了有理数大小比较,同号有理数比较大小的方法:
    都是正有理数:绝对值大的数大.如果是代数式或者不直观的式子要用以下方法,
    (1)作差,差大于0,前者大,差小于0,后者大;
    (2)作商,商大于1,前者大,商小于1,后者大.
    都是负有理数:绝对值的大的反而小.如果是复杂的式子,则可用作差法或作商法比较.
    异号有理数比较大小的方法:就只要判断哪个是正哪个是负就行,
    都是字母:就要分情况讨论
    20、(﹣4,3).
    【解析】
    求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.
    【详解】
    解:∵点E(﹣8,0)在直线y=kx+6上,
    ∴﹣8k+6=0,
    ∴k=,
    ∴y=x+6,
    ∴P(x, x+6),
    由题意:×6×(x+6)=1,
    ∴x=﹣4,
    ∴P(﹣4,3),
    故答案为(﹣4,3).
    本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
    21、8.
    【解析】
    直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.
    【详解】
    如图所示:
    ∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,
    ∴可得AD=AB,故△ABD是等边三角形,
    则AB=AD=4,
    故BO=DO=2,
    则AO=,
    故AC=4,
    则菱形ABCD的面积是:×4×4=8.
    故答案为:8.
    此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.
    22、
    【解析】
    试题分析:设直线AB的解析式为y=kx+b,
    把A(0,1)、点B(1,0)代入,
    得,解得.
    ∴直线AB的解析式为y=﹣1x+1.
    将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,
    ∵y轴⊥BC
    ∴OB=OC,
    ∴BC=1,
    因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣1(x+1)+1,
    即y=-1x-1.
    23、m>﹣5且m≠0
    【解析】
    先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.
    【详解】
    去分母,得m=x-5,
    即x=m+5,
    ∵方程的解是正数,
    ∴m+5>0,即m>-5,
    又因为x-5≠0,
    ∴m≠0,
    则m的取值范围是m>﹣5且m≠0,
    故答案为:m>﹣5且m≠0.
    本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.
    二、解答题(本大题共3个小题,共30分)
    24、(1)﹣;(2)1.
    【解析】
    (1)此题涉及零次幂、开立方和绝对值3个考点,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    (2)首先计算括号里面二次根式的减法,再计算括号外的乘除,最后计算加减即可.
    【详解】
    解:(1)原式=1﹣3+2﹣=﹣;
    (2)原式=(5﹣4)÷+4﹣5=÷+4﹣5=1+4﹣5=1.
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
    25、(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.
    【解析】
    (1)易证△ABM≌△BCN,再根据角度的关系得到∠APB=90°,即可得到AM⊥BN;
    (2)根据旋转的性质及(1)得到四边形BPEP′是矩形,再根据BP= BP′,得到四边形BPEP′是正方形.
    【详解】
    (1)AM⊥BN
    证明:∵四边形ABCD是正方形,
    ∴AB=BC,∠ABM=∠BCN=90°
    ∵BM=CN,
    ∴△ABM≌△BCN
    ∴∠BAM=∠CBN
    ∵∠CBN+∠ABN=90°,
    ∴∠ABN+∠BAM=90°,
    ∴∠APB=90°
    ∴AM⊥BN.
    (2)四边形BPEP′是正方形.
    △A′P′B是△APB绕着点B逆时针旋转90º所得,
    ∴BP= BP′,∠P′BP=90º.
    又由(1)结论可知∠APB=∠A′P′B=90°,
    ∴∠BP′E=90°.
    所以四边形BPEP′是矩形.
    又因为BP= BP′,所以四边形BPEP′是正方形.
    此题主要考查特殊平行四边形的性质与判定,解题的关键是熟知正方形的性质与判定.
    26、 (1)AB=,CD=;(2)能否构成直角三角形,理由见解析.
    【解析】
    (1)利用勾股定理求出AB、CD的长即可;
    (2)根据勾股定理的逆定理,即可作出判断.
    【详解】
    (1)
    (2)如图,


    ∴以AB、CD、EF三条线可以组成直角三角形.
    考查勾股定理, 勾股定理的逆定理,比较基础,熟练掌握勾股定理以及勾股定理的逆定理是解题的关键.
    题号





    总分
    得分

    相关试卷

    2024-2025学年云南省玉溪市红塔区九年级数学第一学期开学检测模拟试题【含答案】:

    这是一份2024-2025学年云南省玉溪市红塔区九年级数学第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年云南省玉溪市红塔区初中学业水平模拟考试九年级数学试题(含答案):

    这是一份2024年云南省玉溪市红塔区初中学业水平模拟考试九年级数学试题(含答案),共10页。试卷主要包含了不等式组的解集是,当时,反比例函数的图象位于,以下是一组按规律排列的多项式,黑发不知勤学早,白首方悔读书迟,若的值为0,则的值是等内容,欢迎下载使用。

    2023-2024学年云南省玉溪市红塔区第一区九年级数学第一学期期末监测模拟试题含答案:

    这是一份2023-2024学年云南省玉溪市红塔区第一区九年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,如图所示的几何体的主视图为,下列方程属于一元二次方程的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map