搜索
    上传资料 赚现金
    英语朗读宝

    2024年浙江省嘉兴市上海外国语大秀洲外国语学校数学九年级第一学期开学学业水平测试试题【含答案】

    2024年浙江省嘉兴市上海外国语大秀洲外国语学校数学九年级第一学期开学学业水平测试试题【含答案】第1页
    2024年浙江省嘉兴市上海外国语大秀洲外国语学校数学九年级第一学期开学学业水平测试试题【含答案】第2页
    2024年浙江省嘉兴市上海外国语大秀洲外国语学校数学九年级第一学期开学学业水平测试试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年浙江省嘉兴市上海外国语大秀洲外国语学校数学九年级第一学期开学学业水平测试试题【含答案】

    展开

    这是一份2024年浙江省嘉兴市上海外国语大秀洲外国语学校数学九年级第一学期开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果平行四边形两条对角线的长度分别为,那么边的长度可能是( )
    A.B.C.D.
    2、(4分)已知边长分别为a、b的长方形的周长为10,面积4,则ab2+a2b的值为( )
    A.10B.20C.40D.80
    3、(4分)下列各数:其中无理数的个数是( )
    A.4B.3C.2D.1
    4、(4分)如图,在中,,,将绕点旋转,当点的对应点落在边上时,点的对应点,恰好与点、在同一直线上,则此时的面积为( )
    A.240B.260C.320D.480
    5、(4分)如图,直线与直线交于点,则根据图象可知不等式的解集是
    A.B.C.D.
    6、(4分)将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形( )
    A.向左平移2个单位B.向右平移2个单位
    C.向上平移2个单位D.向下平移2个单位
    7、(4分)若m+n-p=0,则m的值是( )
    A.-3B.-1C.1D.3
    8、(4分)已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x之间的关系可表示为( )
    A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直线y=3x-2不经过第________________象限.
    10、(4分)如图,F是△ABC内一点,BF平分∠ABC且AF⊥BF,E是AC中点,AB=6,BC=8,则EF的长等于____.
    11、(4分)八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为86分;八(2)班54人,平均成绩为80分,则这两个班的平均成绩为__分.
    12、(4分)在菱形ABCD中,AE垂直平分BC,垂足为E,AB=6,则菱形ABCD的对角线BD的长是_____.
    13、(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE的边长等于________.

    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A(1,2),解答以下问题:
    (1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;
    (2)若体育馆位置的坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
    15、(8分)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
    16、(8分)如图,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.
    (1)求直线BE的解析式;
    (2)求点D的坐标;
    17、(10分)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.
    (1)如图,当点E在线段BC上时,∠BDF=α.
    ①按要求补全图形;
    ②∠EBF=______________(用含α的式子表示);
    ③判断线段 BF,CF,DF之间的数量关系,并证明.
    (2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.
    18、(10分)如图,函数的图象经过,,其中,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连结AD,DC,CB,AC与BD相交于点E.
    (1)若的面积为4,求点B的坐标;
    (2)四边形ABCD能否成为平行四边形,若能,求点B的坐标,若不能说明理由;
    (3)当时,求证:四边形ABCD是等腰梯形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
    20、(4分)如图,已知函数和的图象交于点P, 则根据图象可得,关于的二元一次方程组的解是_____________。
    21、(4分)为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)
    22、(4分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.
    23、(4分)若,则a2﹣6a﹣2的值为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
    根据以上信息,请解答下面的问题;
    (1)补全甲选手10次成绩频数分布图.
    (2)a= ,b= ,c= .
    (3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
    25、(10分)(1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-,=,=……用正整数n表示这个规律是______;
    (2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照这种倒水方式,这1L水能否倒完?
    (3)拓展探究:①解方程:+++=;
    ②化简:++…+.
    26、(12分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
    (1)求AE的长;
    (2)当t为何值时,△PAE为直角三角形?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据平行四边形的对角线互相平分确定对角线的一半的长,然后利用三角形的三边关系确定边长的取值范围,从该范围内找到一个合适的长度即可.
    【详解】
    设平行四边形ABCD的对角线交于O点,
    ∴OA=OC=4,OB=OD=6,
    ∴6-4<BC<6+4,
    ∴2<BC<10,
    ∴6cm符合,
    故选:B.
    考查了三角形的三边关系及平行四边形的性质,解题的关键是确定对角线的一半并根据三边关系确定边长的取值范围,难度不大.
    2、B
    【解析】
    直接利用矩形周长和面积公式得出ab,a+b,进而利用提取公因式法分解因式得出答案.
    【详解】
    解:由边长分别为a、b的长方形的周长为10,面积4,
    .则2(a+b)=10,ab=4,则a+b=5,故ab2+a2b=ab(b+a)=4×5=20.
    故选:B.
    本题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.
    3、D
    【解析】
    依据无理数的三种常见类型进行判断即可.
    【详解】
    解:在中,是无理数,有1个,
    故选:D.
    此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
    4、A
    【解析】
    根据旋转的性质可得,因此可得为等腰三角形,故可得三角形的高,进而计算的面积.
    【详解】
    根据旋转的性质可得
    因此为等腰三角形

    等腰三角形的高为:

    故选A.
    本题主要考查图形的旋转和等腰三角形的性质,难点在于根据题意求出高.
    5、A
    【解析】
    根据函数图象交点右侧直线y=ax+b图象在直线:y=mx+n图象的上面,即可得出不等式ax+b>mx+n的解集.
    【详解】
    解:直线与直线交于点,
    不等式为:.
    故选:.
    此题主要考查了一次函数与不等式,利用数形结合得出不等式的解集是考试重点.
    6、A
    【解析】
    纵坐标不变则图形不会上下移动,横坐标减2,则说明图形向左移动2个单位.
    【详解】
    由于图形各顶点的横坐标都减去2,
    故图形只向左移动2个单位,
    故选A.
    本题考查了坐标与图形的变化---平移,要知道,上下移动,横坐标不变,左右移动,纵坐标不变.
    7、A
    【解析】
    分析:先由m+n﹣p=0,得出m﹣p=﹣n,m+n=p,n﹣p=﹣m,再根据m(﹣)+n(﹣)﹣p(+)=+﹣代入化简即可.
    详解:∵m+n﹣p=0,∴m﹣p=﹣n,m+n=p,n﹣p=﹣m,∴m(﹣)+n(﹣)﹣p(+)=﹣+﹣﹣﹣=+﹣=+﹣=﹣1﹣1﹣1=﹣1.
    故选A.
    点睛:本题考查了分式的加减,用到的知识点是约分、分式的加减,关键是把原式变形为+﹣.
    8、C
    【解析】
    直接利用长方形面积求法得出答案.
    【详解】
    解:∵长方形的周长为16cm,其中一边长为xcm,
    ∴另一边长为:(8﹣x)cm,
    ∴y=(8﹣x)x.
    故选C.
    此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、二
    【解析】
    根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
    【详解】
    解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
    ∴这条直线一定不经过第二象限.
    故答案为:二
    此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
    10、1.
    【解析】
    根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=4,由EF=DE-DF可得答案.
    【详解】
    ∵AF⊥BF,
    ∴∠AFB=90°,
    ∵AB=6,D为AB中点,
    ∴DF=AB=AD=BD=3,
    ∴∠ABF=∠BFD,
    又∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∴∠CBF=∠DFB,
    ∴DE∥BC,
    ∴△ADE∽△ABC,
    ∴,即
    解得:DE=4,
    ∴EF=DE-DF=1,
    故答案为:1.
    本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.
    11、82.1
    【解析】
    根据加权平均数公式,用(1)、(2)班的成绩和除以两班的总人数即可得.
    【详解】
    (分,
    故答案为:82.1.
    本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.若个数,,,,的权分别是,,,,,则叫做这个数的加权平均数.
    12、6
    【解析】
    先证明△ABC是等边三角形,得出AC=AB,再得出OA,根据勾股定理求出OB,即可得出BD.
    【详解】
    如图,
    ∵菱形ABCD中,AE垂直平分BC,
    ∴AB=BC,AB=AC,OA=AC,OB=BD,AC⊥BD,
    ∴AB=BC=AC=6,
    ∴OA=3,
    ∴OB=,
    ∴BD=2OB=6,
    故答案为:6.
    本题考查了菱形的性质、勾股定理的运用;熟练掌握菱形的性质,证明等边三角形和运用勾股定理求出OB是解决问题的关键.
    13、1
    【解析】
    设正方形ODCE的边长为x,则CD=CE=x,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.
    【详解】
    解:设正方形ODCE的边长为x,
    则CD=CE=x,
    ∵△AFO≌△AEO,△BDO≌△BFO,
    ∴AF=AE,BF=BD,
    ∴AB=2+3=5,
    ∵AC2+BC2=AB2,
    ∴(3+x)2+(2+x)2=52,
    ∴x=1,
    ∴正方形ODCE的边长等于1,
    故答案为:1.
    本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) (-3,-2);(2)1.
    【解析】
    (1)利用点A的坐标画出直角坐标系;根据点的坐标的意义描出点B;
    (2)利用三角形的面积得到△ABC的面积.
    【详解】
    解:(1)建立直角坐标系如图所示:
    图书馆B位置的坐标为(-3,-2);
    (2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为=×5×4=1.
    本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
    15、见解析
    【解析】
    由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=DF,易证四边形EBFD是平行四边形,即可得出结论.
    【详解】
    解:∵在平行四边形ABCD中,AB∥CD且AB=CD
    又∵AE=CF
    ∴AB-AE=CD-CF
    ∴BE=DF
    ∴四边形EBFD是平行四边形
    ∴DE=BF.
    本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
    16、 (1)直线BE的解析式为y=x+2;(2)D(-3,).
    【解析】
    (1)先求出点A、B的坐标,继而根据勾股定理求出AB的长,根据折叠可得BD=BO,DE=OE,从而可得AD的长,设DE=OE=m,则AE=OA-m,在直角三角形AED中利用勾股定理求出m,从而得点E坐标,继而利用待定系数法进行求解即可;
    (2)过点D作DM⊥AO,垂足为M,根据三角形的面积可求得DM的长,继而可求得点D的坐标.
    【详解】
    (1),令x=0,则y=2,
    令y=0,则,解得:x=-6,
    ∴A(-6,0),B(0,2),
    ∴OA=6,OB=2,
    ∴AB==4,
    ∵折叠,
    ∴∠BDE=∠BOA=90°,DE=EO,BD=BO=2,
    ∴∠ADE=90°,AD=AB-BD=2,
    设DE=EO=m,则AE=AO-OE=6-m,
    在Rt△ADE中,AE2=AD2+DE2,
    即(6-m)2=m2+(2)2,
    解得:m=2,
    ∴OE=2,
    ∴E(-2,0),
    设直线BE的解析式为:y=kx+b,
    把B、E坐标分别代入得:,
    解得:,
    ∴直线BE的解析式为y=x+2;
    (2)过点D作DM⊥AO,垂足为M,
    由(1)DE=2,AE=AO-OE=4,
    ∵S△ADE=,
    即,
    ∴DM=,
    ∴点D的纵坐标为,
    把y=代入,得

    解得:x=-3,
    ∴D(-3,).
    本题考查了折叠的性质,勾股定理的应用,待定系数法求一次函数解析式,三角形的面积,点的坐标等,熟练掌握并灵活运用相关知识是解题的关键.注意数形结合思想的运用.
    17、(1)①详见解析;②45°-α;③,详见解析;(2),或,或
    【解析】
    (1)①由题意补全图形即可;
    ②由正方形的性质得出,由三角形的外角性质得出,由直角三角形的性质得出即可;
    ③在DF上截取DM=BF,连接CM,证明△CDM≌△CBF,得出CM=CF, ∠DCM=∠BCF,得出MF=即可得出结论;
    (2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
    ②当点E在线段BC的延长线上时,BF=DF+,在BF_上截取BM=DF,连接CM.同(1)③得△CBM≌△CDF得出CM=CF,∠BCM=∠DCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论;
    ③当点E在线段CB的延长线上时,BF+DF=,在DF上截取DM=BF,连接CM,同(1) ③得:ACDM≌△CBF得出CM=CF,∠DCM=∠BCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论.
    【详解】
    解:(1)①如图,
    ②∵四边形ABCD是正方形,
    ∴∠ABC=90°,,
    ∴,
    ∵BF⊥DE,
    ∴∠BFE=90°,
    ∴,
    故答案为:45°-α;
    ③线段BF,CF,DF之间的数量关系是.
    证明如下:在DF上截取DM=BF,连接CM.如图2所示,
    ∵ 正方形ABCD,
    ∴ BC=CD,∠BDC=∠DBC=45°,∠BCD=90°
    ∴∠CDM=∠CBF=45°-α,
    ∴△CDM≌△CBF(SAS).
    ∴ DM=BF, CM=CF,∠DCM=∠BCF.
    ∴ ∠MCF =∠BCF+∠MCE
    =∠DCM+∠MCE
    =∠BCD=90°,
    ∴ MF =.

    (2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
    ②当点E在线段BC的延长线上时,BF=DF+,理由如下:
    在BF上截取BM=DF,连接CM,如图3所示,
    同(1) ③,得:△CBM≌△CDF (SAS),
    ∴CM=CF, ∠BCM=∠DCF.
    ∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,
    ∴△CMF是等腰直角三角形,
    ∴MF=,
    ∴BF=BM+MF=DF+;
    ③当点E在线段CB的延长线上时,BF+DF=;理由如下:
    在DF上截取DM=BF,连接CM,如图4所示,
    同(1)③得:△CDM≌△CBF,
    ∴CM=CF,∠DCM=∠BCF,
    ∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,
    ∴△CMF是等腰直角三 角形,
    ∴MF=,
    即DM+DF=,
    ∴BF+DF=;
    综上所述,当点E在直线BC上时,线段BF,CF,DF之间的数导关系为:,或,或.
    此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.
    18、(1);(2)能, ;(3)详见解析.
    【解析】
    (1)将A的坐标代入反比例解析式中求出k的值,确定出反比例解析式,将B的坐标代入反比例解析式中,求出mn的值,三角形ABD的面积由BD为底边,AE为高,利用三角形面积公式来求,由B的坐标得到BD=m,由AC-EC表示出AE,由已知的面积,利用面积公式列出关系式,将mn的值代入,求出m的值,进而确定出n的值,即可得到B的坐标;
    (2)假设四边形ABCD为平行四边形,利用平行四边形的性质得到BD与AC互相平分,得到E为AC的中点,E为BD的中点,由A的坐标求出E的坐标,进而确定出B的坐标,将B坐标代入反比例解析式检验,B在反比例图象上,故假设正确,四边形ABCD能为平行四边形;
    (3)由由AC=BD,得到A的纵坐标与B的横坐标相等,确定出B的横坐标,将B横坐标代入反比例解析式中求出B的纵坐标,得到B的坐标,进而确定出E的坐标,得到DE=CE=1,由AC=BD,利用等式的性质得到AE=BE,进而得到两对对应边成比例,且由对顶角相等得到夹角相等,利用两边对应成比例且夹角相等的两三角形相似,得到三角形DEC与三角形AEB相似,由相似三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行得到CD与AB平行,而在直角三角形ADE与直角三角形BEC中,DE=EC,AE=BE,利用勾股定理得到AD=BC,且AD与BC不平行,可得出四边形ABCD为等腰梯形.
    【详解】
    解:(1);
    (2)若ABCD是平行四边形,则AC,BD互相平分,
    ∵,∴,
    将代入反比例中,;
    ∴B在上,则四边形ABCD能成为平行四边形;
    (3)∵,,;

    ∵轴,轴,








    根据勾股定理,.
    ∵AD与BC不平行
    ∴则四边形ABCD是等腰梯形.
    本题考查反比例函数综合题,熟练掌握计算法则是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x=-1
    【解析】
    观察图象,根据图象与x轴的交点解答即可.
    【详解】
    ∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),
    ∴kx+1=0的解是x= -1.
    故答案为:x= -1.
    本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.
    20、
    【解析】
    由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
    【详解】
    函数y=ax+b和y=kx的图象交于点P(-4,-2),
    即x=-4,y=-2同时满足两个一次函数的解析式.
    所以关于x,y的方程组的解是.
    故答案为:.
    本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
    21、抽样调查.
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
    【详解】
    解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,
    故答案为:抽样调查.
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    22、(9,0)
    【解析】
    根据位似图形的定义,连接A′A,B′B并延长交于(9,0),
    所以位似中心的坐标为(9,0).
    故答案为:(9,0).
    23、-1
    【解析】
    把a的值直接代入计算,再按二次根式的运算顺序和法则计算.
    【详解】
    解:当 时,
    a2﹣6a﹣2=(3﹣)2﹣6(3﹣)﹣2
    =19﹣6﹣18+6﹣2
    =﹣1.
    本题考查了实数的混合运算,解题的关键是掌握实数的运算法则.
    二、解答题(本大题共3个小题,共30分)
    24、(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
    【解析】
    (1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;
    (2)根据平均数公式、中位数的求法和方差公式计算得到答案;
    (3)从平均数和方差进行分析即可得到答案.
    【详解】
    解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
    补全图形如下:
    (2)a==8(环),
    c=×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
    b==7.5,
    故答案为:8、1.2、7.5;
    (3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
    本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
    25、(1);(2)按这种倒水方式,这1L水倒不完,见解析;(3)①x=;②
    【解析】
    (1)归纳总结得到一般性规律,写出即可;
    (2)根据题意列出关系式,利用得出的规律化简即可;
    (3)①方程变形后,利用得出的规律化简,计算即可求出解;
    ②原式利用得出的规律变形,计算即可求出值.
    【详解】
    (1)根据题意得:=-;
    (2)前n次倒出的水总量为+++…+=1-+-+-+…+-=1-=,
    ∵<1,
    ∴按这种倒水方式,这1L水倒不完;
    (3)①方程整理得:[(1-)+(-)+(-)+(-)]•=,
    [(1-)]•=,
    •=,
    解得:x=,
    经检验,x=是原方程的解,
    ∴原方程的解为x=;
    ②++…+
    =
    =(-)+(-)+(-)+…+[-]
    =[-]
    =.
    本题考查规律型:数字的变化类,解分式方程,分式的混合运算,解答本题的关键是根据所给式子找出规律,并利用规律解答.
    26、(1)5;(2)当t=2或t=时,△PAE为直角三角形;
    【解析】
    (1)在直角△ADE中,利用勾股定理进行解答;
    (2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
    【详解】
    解:(1)∵矩形ABCD中,AB=9,AD=1,
    ∴CD=AB=9,∠D=90°,
    ∴DE=9﹣2=3,
    ∴AE==5;
    (2)①若∠EPA=90°,t=2;
    ②若∠PEA=90°,(2﹣t)2+12+52=(9﹣t)2,
    解得t=.
    综上所述,当t=2或t=时,△PAE为直角三角形;
    本题考查了四边形综合题,综合勾股定理,直角三角形的性质,一元二次方程的应用等知识点,要注意分类讨论,以防漏解.
    题号





    总分
    得分
    选手
    A平均数
    中位数
    众数
    方差

    a
    8
    8
    c

    7.5
    b
    6和9
    2.65

    相关试卷

    2024年上海外国语大秀洲外国语学校数学九年级第一学期开学经典试题【含答案】:

    这是一份2024年上海外国语大秀洲外国语学校数学九年级第一学期开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年浙江省嘉兴市上海外国语大秀洲外国语学校数学九上期末考试试题含答案:

    这是一份2023-2024学年浙江省嘉兴市上海外国语大秀洲外国语学校数学九上期末考试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,关于二次函数,下列说法正确的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    2023-2024学年浙江省嘉兴市上海外国语大秀洲外国语学校九年级数学第一学期期末质量跟踪监视模拟试题含答案:

    这是一份2023-2024学年浙江省嘉兴市上海外国语大秀洲外国语学校九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了计算的结果是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map