2024年浙江省金华婺城区四校联考九年级数学第一学期开学考试试题【含答案】
展开
这是一份2024年浙江省金华婺城区四校联考九年级数学第一学期开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)四边形ABCD中,AB∥CD,要使ABCD是平行四边形,需要补充的一个条件( )
A.AD=BCB.AB=CDC.∠DAB=∠ABCD.∠ABC=∠BCD
2、(4分)如图,数轴上所表示关于x的不等式组的解集是( )
A.B.C.D.
3、(4分)已知点(-1,y1),(1,y2),(-2,y3)都在直线y=-x上,则y1,y2,y3的大小关系是( )
A..y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y2
4、(4分)某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表 示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是( )
A.小明在公园休息了5分钟
B.小明乘出租车用了17分
C.小明跑步的速度为180米/分
D.出租车的平均速度是900米/分
5、(4分)下列说法正确的是 ( )
A.对角线相等且互相垂直的四边形是菱形
B.对角线互相垂直平分的四边形是正方形
C.对角线互相垂直的四边形是平行四边形
D.对角线相等且互相平分的四边形是矩形
6、(4分)菱形ABCD的对角线AC,BD相交于点O,若AC=6,菱形的周长为20,则对角线BD的长为( )
A.4B.8C.10D.12
7、(4分)用反证法证明命题“若,则”时,第一步应假设( )
A.B.C.D.
8、(4分)下列四个三角形,与左图中的三角形相似的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.
10、(4分)如图,∠A=90°,∠AOB=30°,AB=2,△可以看作由△AOB绕点O逆时针旋转60°得到的,则点与点B的距离为_______.
11、(4分)甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:
则四个人中成绩最稳定的是______.
12、(4分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)
13、(4分)已知是一元二次方程的两实根,则代数式_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图,回答下列问题(1)机动车行驶________小时后加油,中途加油_______升;(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并直接写出自变量t的取值范围;(3)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由。
15、(8分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.
(1)如图1,当点与点重合时,求的长;
(2)设,,求与的函数关系式,并写出定义域;
(3)如图2,联结,当是等腰三角形时,求的长.
16、(8分)某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克3.5元,小王携带现金7000元到这市场购苹果,并以批发价买进.如果购买的苹果为x千克,小王付款后的剩余现金为y元
(1)写出y关于x的函数关系式,并写出自变量x的取值范围;
(2)若小王购买800千克苹果,则小王付款后剩余的现金为多少元?
17、(10分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.
(1)求的长;
(2)若四边形为平行四边形时,求的周长;
(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.
18、(10分)计算:(1)(1-)+|1-2|+×.
(2)(+2)÷-.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.
20、(4分)已知,是关于的方程的两根,且满足,那么的值为________.
21、(4分)如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___
22、(4分)下列4种图案中,既是轴对称图形,又是中心对称图形的有__________个.
23、(4分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,根据要求画图.
(1)把向右平移5个方格,画出平移的图形.
(2)以点B为旋转中心,把顺时针方向旋转,画出旋转后的图形.
25、(10分)如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)若EG=EH,AB=8,BC=1.求AE的长.
26、(12分)如图,▱ABCD中,AB=2cm,AC=5cm,S▱ABCD=8cm2,E点从B点出发,以1cm每秒的速度,在AB延长线上向右运动,同时,点F从D点出发,以同样的速度在CD延长线上向左运动,运动时间为t秒.
(1)在运动过程中,四边形AECF的形状是____;
(2)t=____时,四边形AECF是矩形;
(3)求当t等于多少时,四边形AECF是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的判定方法一一判断即可.
【详解】
∵AB∥CD,∴只要满足AB=CD,可得四边形ABCD是平行四边形,故选:B.
考查平行四边形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、A
【解析】
试题解析:由数轴可得:关于x的不等式组的解集是:x≥1.
故选A.
3、C
【解析】
先根据直线y=-x判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
【详解】
解:∵直线y=-x,k=-1<0,
∴y随x的增大而减小,
又∵-1<-1<1,
∴y3>y1>y1.
故选:C.
本题考查的是正比例函数的增减性,即正比例函数y=kx(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
4、B
【解析】
试题解析:A、在公园停留的时间为15-10=5分钟,也就是在公园休息了5分钟,此选项正确,不合题意;
B、小明乘出租车的时间是17-15=2分钟,此选项错误,符合题意;
C、小明1800米用了10分钟,跑步的速度为180米/分,此选项正确,不合题意;
D、出租车1800米用了2分钟,速度为900米/分,此选项正确,不合题意.
故选B.
考点:函数的图象.
5、D
【解析】
分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.
【详解】
对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;
对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;
对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;
对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;
故选:D.
考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.
6、B
【解析】
利用菱形的性质根据勾股定理求得BO的长,然后求得BD的长即可.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,
∵AC=6,
∴AO=3,
∵周长为20,
∴AB=5,
由勾股定理得:BO=4,
∴BD=8,
故选:B.
本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.
7、C
【解析】
用反证法证明命题的真假,首先我们要假设命题的结论不成立,据此即可得出答案.
【详解】
∵用反证法证明命题的真假,首先我们要假设命题的结论不成立,
∴反证法证明命题“若,则”时,第一步应假设,
故选:C.
本题主要考查了反证法的运用,熟练掌握相关概念是解题关键.
8、B
【解析】
设单位正方形的边长为1,求出各边的长,再根据各选项的边长是否成比例关系即可判断.
【详解】
设单位正方形的边长为1,给出的三角形三边长分别为2,4,2.
A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;
B、三角形三边,2,,与给出的三角形的各边成比例,故B选项正确;
C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;
D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.
故选:B.
本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.
【详解】
设另一个根为t,
根据题意得4+t=3,
解得t=-1,
即另一个根为-1.
故答案为-1.
此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=− .
10、1
【解析】
【分析】根据图形旋转的性质可得出△AOB≌△A′OB′,再由全等三角形的性质可得出∠A′OB′=30°,AB=1,再根据全等三角形的判定定理可得出△AOB≌△A′OB,由全等三角形的性质即可得出结论.
【详解】连接A′B,
∵△A′OB′可以看作是由△AOB绕点O逆时针旋转60°得到的,
∴△AOB≌△A′OB′,
∴OA=OA′,∠A′OA=60°,
∵∠AOB=30°,
∴∠A′OB=30°,
在△AOB与△A′OB中,
,
∴△AOB≌△A′OB,
∴A′B=AB=1,
故答案为:1.
【点睛】本题考查了旋转的性质,全等三角形的判定与性质,熟练掌握旋转的性质是解题的关键.
11、甲
【解析】
根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.
【详解】
解:,
四个人中成绩最稳定的是甲.
故答案为:甲.
此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
12、甲
【解析】
由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,
则S2甲
相关试卷
这是一份2024年浙江省金华市婺城区第四中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省金华市金东区数学九年级第一学期开学联考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省金华市婺城区2023-2024学年九年级下学期调研抽测考试数学试题,共6页。