终身会员
搜索
    上传资料 赚现金

    2024年浙江省宁波北仑区东海实验学校数学九上开学质量检测试题【含答案】

    立即下载
    加入资料篮
    2024年浙江省宁波北仑区东海实验学校数学九上开学质量检测试题【含答案】第1页
    2024年浙江省宁波北仑区东海实验学校数学九上开学质量检测试题【含答案】第2页
    2024年浙江省宁波北仑区东海实验学校数学九上开学质量检测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年浙江省宁波北仑区东海实验学校数学九上开学质量检测试题【含答案】

    展开

    这是一份2024年浙江省宁波北仑区东海实验学校数学九上开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是( )
    A.k<3B.k<0C.k>3D.0<k<3
    2、(4分)已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1, 2)在这个反比例函数上,a的值可以是( )
    A.0B.1C.2D.3
    3、(4分)菱形具有而一般平行四边形不具有的性质是( )
    A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直
    4、(4分)若=﹣a,则a的取值范围是( )
    A.﹣3≤a≤0B.a≤0C.a<0D.a≥﹣3
    5、(4分)如图,点是矩形两条对角线的交点,E是边上的点,沿折叠后,点恰好与点重合.若,则折痕的长为 ( )
    A.B.C.D.6
    6、(4分)函数自变量的值可以是( )
    A.-1B.0C.1D.2
    7、(4分)方程的解是( )
    A.B.C.D.
    8、(4分)一次函数的图像经过( )
    A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)把多项式n(n﹣2)+m(2﹣n)分解因式的结果是_____.
    10、(4分)一个多边形的内角和等于 1800°,它是______边形.
    11、(4分)某市出租车的收费标准是:千米以内(包括千米)收费元,超过千米,每增加千米加收元,则当路程是(千米)()时,车费(元)与路程(千米)之间的关系式(需化简)为:________.
    12、(4分)如图,△ABC中,BD⊥CA,垂足为D,E是AB的中点,连接DE.若AD=3,BD=4,则DE的长等于_____
    13、(4分)李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为,若周伟的座位在李明的前面相距2排,同时在他的右边相距2列,则周伟的座位可简记为___________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)化简并求值:,其中x=﹣1.
    15、(8分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:
    (1)表中的a=______,b=______,c=______;
    (2)把上面的频数分布直方图补充完整,并画出频数分布折线图;
    (3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.
    16、(8分)计算:
    (1) (2)
    (3) (4)
    17、(10分)电力公司为鼓励市民节约用电,采取按月电量分段收费的办法,已知某户居民每月应缴电费(元)与用电量(度)的函数图象是一条折线(如图),根据图象解答下列问题.
    (1)求出当时,与之间的函数关系式;
    (2)若该用户某月用电度,则应缴费多少元?
    18、(10分)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.
    (1)求S关于x的函数表达式;
    (2)求x的取值范围;
    (3)当S=4时,求P点的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知关于x的分式方程=1的解是非负数,则m的取值范围是_____.
    20、(4分)若关于x的分式方程有增根,则a的值为_______
    21、(4分)若关于的方程无解,则的值为________.
    22、(4分)根据图中的程序,当输入数值﹣2时,输出数值为a;若在该程序中继续输入数值a时,输出数值为_____.
    23、(4分)已知一次函数的图像经过点,那么这个一次函数在轴上的截距为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图 1,在正方形 ABCD 中,对角线 AC, BD 交于点 O ,点 E 在 AB 上,点 F 在 BC 的延长线上,且 AE  CF .连接 EF 交 AC 于点 P, 分别连接 DE, DF .
    (1)求证: ADE  CDF ;
    (2)求证: PE  PF ;
    (3)如图 2,若 PE  BE, 则的值是 .(直接写出结果即可).
    25、(10分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.
    (1)求证:BD∥AC;
    (2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;
    (3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
    26、(12分)(1)某学校“智慧方园”数学社团遇到这样一个题目:
    如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
    经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
    请回答:∠ADB= °,AB= .
    (2)请参考以上解决思路,解决问题:
    如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.
    【详解】
    ∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,
    ∴,
    解得:0<k<3,
    故选:D.
    本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.
    2、A
    【解析】
    根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.
    解:∵反比例函数,在每个象限内y随着x的增大而增大,
    ∴函数图象在二、四象限,
    ∴图象上的点的横、纵坐标异号.
    A、a=0时,得P(-1,2),故本选项正确;
    B、a=1时,得P(0,2),故本选项错误;
    C、a=2时,得P(1,2),故本选项错误;
    D、a=3时,得P(2,2),故本选项错误.
    故选A.
    此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.
    3、D
    【解析】
    试题分析:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;
    平行四边形具有的性质:对边相等,对角相等,对角线互相平分;
    ∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.
    故选D.
    考点:菱形的性质;平行四边形的性质.
    4、A
    【解析】
    根据二次根式的性质列出不等式,解不等式即可解答.
    【详解】
    ∵= =﹣a,
    ∴a≤0,a+3≥0,
    ∴﹣3≤a≤0.
    故选A.
    本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.
    5、A
    【解析】
    由矩形的性质可得OA=OC,根据折叠的性质可得OC=BC,∠COE=∠B=90°,即可得出BC=AC,OE是AC的垂直平分线,可得∠BAC=30°,根据垂直平分线的性质可得CE=AE,根据等腰三角形的性质可得∠OCE=∠BAC=30°,在Rt△OCE中利用含30°角的直角三角形的性质即可求出CE的长.
    【详解】
    ∵点O是矩形ABCD两条对角线的交点,
    ∴OA=OC,
    ∵沿CE折叠后,点B恰好与点O重合.BC=3,
    ∴OC=BC=3,∠COE=∠B=90°,
    ∴AC=2BC=6,OE是AC的垂直平分线,
    ∴AE=CE,
    ∵∠B=90°,BC=AC,
    ∴∠BAC=30°,
    ∴∠OCE=∠BAC=30°,
    ∴OC=CE,
    ∴CE=2.
    故选A.
    本题考查折叠的性质、矩形的性质及含30°角的直角三角形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;矩形的对角线相等且互相平分;30°角所对的直角边等于斜边的一半.熟练掌握相关性质是解题关键.
    6、C
    【解析】
    根据分母不能等于零,可得答案.
    【详解】
    解:由题意,
    得,
    解得,
    故选:C.
    本题考查了函数自变量的取值范围,利用分母不能等于零得出不等式是解题关键.
    7、C
    【解析】
    根据方程即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    解:由,得
    x=0,x+2=0

    故选C.
    本题考查了解一元二次方程. 能把一元二次方程转化为一元一次方程是解此题的关键.
    8、D
    【解析】
    根据一次函数的性质k<0,则可判断出函数图象y随x的增大而减小,再根据b>0,则函数图象一定与y轴正半轴相交,即可得到答案.
    【详解】
    解:∵一次函数y=-2x+3中,k=-2<0,则函数图象y随x的增大而减小,
    b=3>0,则函数图象一定与y轴正半轴相交,
    ∴一次函数y=-2x+3的图象经过第一、二、四象限.
    故选:D.
    本题考查了一次函数的图象,一次函数y=kx+b的图象经过的象限由k、b的值共同决定,分如下四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(n﹣2)(n﹣m).
    【解析】
    用提取公因式法分解因式即可.
    【详解】
    n(n﹣2)+m(2﹣n)= n(n﹣2)-m(n-2)=(n﹣2)(n﹣m).
    故答案为(n﹣2)(n﹣m).
    本题考查了用提公因式法进行因式分解;一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    10、十二
    【解析】
    根据多边形的内角和公式列方程求解即可;
    【详解】
    设这个多边形是n边形,
    由题意得,(n-2)•180°=1800°,
    解得n=12;
    故答案为十二
    本题考查了多边形的内角和,关键是掌握多边形的内角和公式.
    11、
    【解析】
    根据题意可以写出相应的函数关系式,本题得以解决.
    【详解】
    由题意可得,
    当x>3时,
    y=5+(x-3)×1.2=1.2x+1.1,
    故答案为:y=1.2x+1.1.
    本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.
    12、2.1
    【解析】
    根据勾股定理求出AB,根据直角三角形斜边上中线性质得出DE=AB,代入求出即可.
    【详解】
    .解:∵BD⊥CA,
    ∴∠ADB=90°,
    在Rt△ADB中,由勾股定理得:AB= ==1,
    ∵E是AB的中点,∠ADB=90°,
    ∴DE=AB=2.1,
    故答案为:2.1.
    本题考查了勾股定理和直角三角形斜边上中线的性质,能求出AB的长和得出DE=AB是解此题的关键.
    13、(3,6)
    【解析】
    先求出周伟所在的排数与列数,再根据第一个数表示排数,第二个数表示列数解答.
    【详解】
    解:∵周伟的座位在李明的前面相距2排,同时在他的右边相距2列,
    ∴周伟在第3排第6列,
    ∴周伟的座位可简记为(3,6).
    故答案为:(3,6).
    本题考查坐标确定位置,读懂题目信息,理解有序数对的两个数的实际意义是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、2.
    【解析】
    试题分析:先将进行化简,再将x的值代入即可;
    试题解析:
    原式=﹣•(x﹣1)==,
    当x=﹣1时,原式=﹣2.
    15、(1)14;0.08;4;(2)详见解析;(3)80.
    【解析】
    (1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;
    (2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;
    (3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.
    【详解】
    解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;
    故答案为:14;0.08;4;
    (2)频数分布直方图、折线图如图,

    (3)根据题意得:1000×(4÷50)=80(人),
    则你估计该校进入决赛的学生大约有80人.
    此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.
    16、(1)5;(2)-5;(3);(4)
    【解析】
    根据算术平方根的定义以及二次根式的性质,分别对(1)(2)(3)(4)进行化简计算即可.
    【详解】
    解:(1)
    (2)
    (3)
    (4)
    本题主要考查了算术平方根的定义,熟练掌握二次根式的性质是解答本题的关键.
    17、(1);(2)用电度,应缴费元
    【解析】
    (1)本题考查的是分段函数的知识.依题意可以列出函数关系式;
    (2)根据(1)中的函数解析式以及图标即可解答.
    【详解】
    解:(1)设与的关系式为,
    射线过点、,
    ,
    解得.
    与的关系式是.
    (2)当时,
    .
    用电度,应缴费元.
    本题主要考查一次函数的应用以及待定系数法求函数解析式,解决问题的关键是从一次函数的图象上获取信息.
    18、(1)S=10﹣2x;(2)0<x<5;(3)(3,2)
    【解析】
    (1)根据题意画出图形,由x+y=5可知y=5﹣x ,再由三角形的面积公式即可得出结论;
    (2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;
    (3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.
    【详解】
    (1)如图:
    ∵x+y=5,
    ∴y=5﹣x,
    ∴S=×4×(5﹣x)=10﹣2x;
    (2)∵点P(x,y)在第一象限,且x+y=5,
    ∴0<x<5;
    (3)∵由(1)知,S=10﹣2x,
    ∴10﹣2x=4,解得x=3,
    ∴y=2,
    ∴P(3,2).
    本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m≥1
    【解析】
    由分式方程的解为非负数得到关于m的不等式,进而求出m的范围即可.
    【详解】
    解:分式方程去分母得:m=x+1,
    即x=m-1,
    由分式方程的解为非负数,得到
    m-1≥0,且m-1≠-1,
    解得:m≥1,
    故答案为m≥1.
    本题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
    20、3
    【解析】
    先根据分式方程的求解去掉分式方程的分母,再把增根x=5代入即可求出a的值.
    【详解】

    去分母得2-(x-a)=7(x-5)
    把x=5代入得2-(5-a)=0,解得a=3
    故填:3.
    此题主要考查分式方程的求解,解题的关键是熟知分式方程增根的定义.
    21、
    【解析】
    分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.
    【详解】
    去分母得:3x−2=2x+2+m,
    由分式方程无解,得到x+1=0,即x=−1,
    代入整式方程得:−5=−2+2+m,
    解得:m=−5,
    故答案为-5.
    此题考查分式方程的解,解题关键在于掌握运算法则.
    22、8 .
    【解析】
    观察图形我们可以得出x和y的关系式为:是x≥1时关系式为y=x+5,当x<1是y=−x+5,然后将x=-2代入y=−x+5,求出y值即a值,再把a值代入关系式即可求出结果.
    【详解】
    当x=-2时,
    ∵x=−2

    相关试卷

    2024年浙江省宁波市北仑区数学九上开学学业水平测试试题【含答案】:

    这是一份2024年浙江省宁波市北仑区数学九上开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省宁波市北仑区宁波东海实验学校2022-2023学年七年级上学期期中数学试题:

    这是一份浙江省宁波市北仑区宁波东海实验学校2022-2023学年七年级上学期期中数学试题,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省宁波北仑区东海实验学校2023-2024学年九年级数学第一学期期末统考模拟试题含答案:

    这是一份浙江省宁波北仑区东海实验学校2023-2024学年九年级数学第一学期期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线与坐标轴的交点个数为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map