终身会员
搜索
    上传资料 赚现金
    2024年浙江省台州市天台县坦头中学九上数学开学达标检测试题【含答案】
    立即下载
    加入资料篮
    2024年浙江省台州市天台县坦头中学九上数学开学达标检测试题【含答案】01
    2024年浙江省台州市天台县坦头中学九上数学开学达标检测试题【含答案】02
    2024年浙江省台州市天台县坦头中学九上数学开学达标检测试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年浙江省台州市天台县坦头中学九上数学开学达标检测试题【含答案】

    展开
    这是一份2024年浙江省台州市天台县坦头中学九上数学开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若,,则( )
    A.B.C.D.5
    2、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是
    A.B.C.D.
    3、(4分)正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.50,EF⊥AB,垂足为F,则EF的长( )
    A.1B.C.D.
    4、(4分)下列图书馆的标志中,是中心对称图形的是( )
    A.B.
    C.D.
    5、(4分)如图,点 P 是反比例函数 y =6/x的图象上的任意一点,过点 P分别作两坐标轴的垂线,与坐标轴构成矩形 OAPB,点 D 是矩形OAPB 内任意一点,连接 DA、DB、DP、DO,则图中阴影 部分的面积
    A.1B.2C.3D.4
    6、(4分)某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
    根据上表中的信息判断,下列结论中错误的是( )
    A.该班一共有42名同学
    B.该班学生这次考试成绩的众数是8
    C.该班学生这次考试成绩的平均数是27
    D.该班学生这次考试成绩的中位数是27分
    7、(4分)若分式有意义,则的取值范围为( )
    A.B.C.D.
    8、(4分)寓言故事《乌鸦喝水》教导我们遇到困难要运用智慧、认真思考才能让问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子较多,水都快溢出来了,乌鸦成功喝到了水,如果衔入瓶中石子的体积为,水面高度为,下面图象能大致表示该故事情节的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)正比例函数()的图象过点(-1,3),则=__________.
    10、(4分)分解因式:= .
    11、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,若再添加一个条件,就可得平行四边形ABCD是矩形,则你添加的条件是_____.
    12、(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为______ .
    13、(4分)等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.
    (1)求一件A,B型商品的进价分别为多少元?
    (2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?
    15、(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.
    (1)若正方形ABCD的边长为2,则点B、C的坐标分别为 .
    (2)若正方形ABCD的边长为a,求k的值.
    16、(8分)如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AGBD交CB的延长线于点G.
    (1)求证:DEBF;
    (2)当∠G为何值时?四边形DEBF是菱形,请说明理由.
    17、(10分)在▱ABCD中,AB=BC=9,∠BCD=120°.点M从点A出发沿射线AB方向移动.同时点N从点B出发,以相同的速度沿射线BC方向移动,连接AN,CM,直线AN、CM相交于点P.
    (1)如图甲,当点M、N分别在边AB、BC上时,
    ①求证:AN=CM;
    ②连接MN,当△BMN是直角三角形时,求AM的值.
    (2)当M、N分别在边AB、BC的延长线上时,在图乙中画出点P,并直接写出∠CPN的度数.
    18、(10分)(发现)如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)
    (探究)如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.
    (应用)在(探究)的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是: .(只添加一个条件)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC的延长线于点F,连结EF,若AE=1,则EF的值为__.
    20、(4分)当x=2时,二次根式的值为________.
    21、(4分)已知关于x的方程x2+mx-2=0的两个根为x1、x2,若x1+x2-x1x2=6,则m=______.
    22、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
    23、(4分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,直线y=x+m与x轴交于点A(-3,0),直线y=-x+2与x轴、y轴分别交于B、C两点,并与直线y=x+m相交于点D,
    (1)点D的坐标为 ;
    (2)求四边形AOCD的面积;
    (3)若点P为x轴上一动点,当PD+PC的值最小时,求点P的坐标.
    25、(10分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.
    26、(12分)如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.
    (1)求证:四边形ADCE是矩形;
    (2)①若AB=17,BC=16,则四边形ADCE的面积= .
    ②若AB=10,则BC= 时,四边形ADCE是正方形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    依据,2y=3z即可得到x=y,z=y,代式化简求值即可.
    【详解】
    解:∵,,
    ∴x=y,z=y,
    ∴= -5.
    故选:C.
    本题主要考分式的求值,用含y的代数式表示x和z是解决问题的关键.
    2、C
    【解析】
    将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
    【详解】
    根据中位数的概念,可知这组数据的中位数为:21
    故答案选:C
    本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.
    3、B
    【解析】
    根据题意连接AC,与BD的交点为O.再根据, ,可得AE是的角平分线,所以可得OE=EF,BE= ,所以OB=,因此可计算出EF的长.
    【详解】
    解:根据题意连接AC,与BD的交点为O.
    四边形ABCD为正方形


    AE是的角平分线




    故选B.
    本题主要考查正方形的性质,关键在于根据题意列出方程,这是考试的常考点,应当熟练掌握.
    4、C
    【解析】
    根据中心对称图形的概念判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项正确;
    D、不是中心对称图形,故此选项错误.
    故选:C.
    此题主要考查了中心对称图形的概念.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    5、C
    【解析】
    试题分析:P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=1.∴阴影部分的面积=×矩形OAPB的面积=2.
    考点:反比例函数系数k的几何意义
    6、B
    【解析】
    根据众数,中位数,平均数的定义解答.
    【详解】
    解:该班共有6+5+5+8+7+7+4=42(人),
    成绩27分的有8人,人数最多,众数为27;
    该班学生这次考试成绩的平均数是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,
    该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,
    故选:B.
    本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
    7、A
    【解析】
    直接利用分式有意义的条件即分母不为零,进而得出答案.
    【详解】
    解:∵分式有意义,
    ∴x+1≠0,
    解得:x≠-1.
    故选A.
    此题主要考查了分式有意义的条件,正确把握定义是解题关键.
    8、D
    【解析】
    根据题意可以分析出各段过程中h与t的函数关系,从而可以解答本题.
    【详解】
    解:由题意可得,
    刚开始瓶子内盛有一些水,则水面的高度大于0,故选项A,B错误,
    然后乌鸦衔来一些小石子放入瓶中,瓶中的水面高度随着t的增加缓慢增加,当水面与瓶子竖直部分持平时,再继续上升的过程中,h与t成一次函数图象,故选项C错误,选项D正确,
    故选:D.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    将(-1,1)代入y=kx,求得k的值即可.
    【详解】
    ∵正比例函数()的图象经过点(-1,1),
    ∴1=-k,
    解得k=-1,
    故答案为:-1.
    此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    10、.
    【解析】
    试题分析:原式=.故答案为.
    考点:因式分解-运用公式法.
    11、AC=BD或∠ABC=90°.
    【解析】
    矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件.
    【详解】
    :若使ABCD变为矩形,可添加的条件是:
    AC=BD;(对角线相等的平行四边形是矩形)
    ∠ABC=90°等.(有一个角是直角的平行四边形是矩形)
    故答案为AC=BD或∠ABC=90°.
    此题主要考查的是平行四边形的性质及矩形的判定方法,熟练掌握矩形和平行四边形的联系和区别是解答此题的关键.
    12、105°
    【解析】
    由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.
    【详解】
    ∵AD∥BC,
    ∴∠ADB=∠DBG,
    由折叠可得∠ADB=∠BDG,
    ∴∠DBG=∠BDG,
    又∵∠1=∠BDG+∠DBG=50°,
    ∴∠ADB=∠BDG=25°,
    又∵∠2=50°,
    ∴△ABD中,∠A=105°,
    ∴∠A′=∠A=105°,
    故答案为:105°.
    本题主要考查了翻折变换(折叠问题),平行四边形的性质,熟练掌握折叠性质和平行四边形额性质是解答本题的关键.
    13、12.
    【解析】
    因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.
    【详解】
    解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;
    当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;
    ∴顶角的度数为80°或20°.
    故答案为80°或20°.
    本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.
    【解析】
    (1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;
    (2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.
    【详解】
    (1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.
    由题意:
    解得x=120,
    经检验x=120是分式方程的解,
    答:一件B型商品的进价为120元,则一件A型商品的进价为150元.
    (2)因为客商购进A型商品m件,销售利润为w元.
    m≤100﹣m,m≤50,
    由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,
    ∴m=50时,w有最小值=5500(元)
    此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.
    15、(1)(1,2),(3,2);(2)
    【解析】
    (1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;
    (2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.
    【详解】
    解:(1)∵正方形边长为2,
    ∴AB=2,
    在直线y=2x中,当y=2时,x=1,
    ∴B(1,2),
    ∵OA=1,OD=1+2=3,
    ∴C(3,2),
    故答案为(1,2),(3,2);
    (2)∵正方形边长为a,
    ∴AB=a,
    在直线y=2x中,当y=a时,x=,
    ∴OA=,OD=,
    ∴C(,a),
    将C(,a)代入y=kx,得a=k×,
    解得:k=,
    故答案为.
    本题考查了正方形的性质与正比例函数的综合运用,熟练掌握和灵活运用正方形的性质是解题的关键.
    16、(1)详见解析;(2)当∠G=90°时,四边形DEBF是菱形,理由详见解析
    【解析】
    (1)根据已知条件证明DFBE,DF=BE,从而得出四边形DEBF为平行四边形,即可证明DEBF;
    (2)当∠G=90°时,四边形DEBF是菱形.先证明BF=DC=DF,再根据邻边相等的平行四边形是菱形,从而得出结论.
    【详解】
    证明:(1)在□ABCD中,ABCD,AB=CD ,
    ∵E、F分别为边AB、CD的中点,
    ∴DF=DC,BE=AB,
    ∴DFBE,DF=BE,
    ∴四边形DEBF为平行四边形,
    ∴DEBF
    (2)当∠G=90°时,四边形DEBF是菱形.
    理由:∵ AGBD ,
    ∴ ∠DBC=∠G=90°,
    ∴ 为直角三角形,
    又∵F为边CD的中点,
    ∴BF=DC=DF
    ∵四边形DEBF为平行四边形,
    ∴四边形DEBF为菱形
    本题考查了平行四边形的综合问题,掌握平行四边形的性质、菱形的性质是解题的关键.
    17、(1)①见解析②3或6(2)120°
    【解析】
    (1)①连接AC,先证△ABC是等边三角形得AB=CA=9、∠B=∠CAB=60°,由BN=AM证△ABN≌△CAM即可得;
    ②分∠MNB=90°和∠NMB=90°两种情况,由∠B=60°得出另一个锐角为30°,根据直角三角形中30°角所对边等于斜边的一半及AM=BN求解可得;
    (2)根据题意作出图形,连接AC,先证△BAN≌△ACM得∠N=∠M,由∠NCP=∠MCB知∠CPN=∠CBM,根据AB∥CD、∠BCD=120°可得∠CPN=∠CBM=120°.
    【详解】
    (1)①如图1,连接AC,
    在▱ABCD中,AB∥DC,
    ∴∠B=180°﹣∠BCD=180°﹣120°=60°,
    又∵AB=BC=9,
    ∴△ABC是等边三角形,
    ∴AB=CA=9,∠B=∠CAB=60°,
    又∵BN=AM,
    ∴△ABN≌△CAM(SAS),
    ∴AN=CM;
    ②如图2,
    (Ⅰ)当∠MNB=90°时,
    ∵∠B=60°,
    ∴∠BMN=90°﹣60°=30°,
    ∴BN=BM,
    又∵BN=AM,
    ∴AM=(9﹣AM),
    ∴AM=3;
    (Ⅱ)当∠NMB=90°时,∠BNM=90°﹣60°=30°,
    ∴BM=BN,
    ∴9﹣AM=AM,
    ∴AM=6;
    综上所述,当△BMN是直角三角形时,AM的值为3或6;
    (2)如图3所示,
    点P即为所求;
    ∠CPN=120°,
    连接AC,
    由(1)知△ABC是等边三角形,
    ∴∠BAN=∠CAM=60°、AB=CA,
    又∵BN=AM,
    ∴△BAN≌△ACM(SAS),
    ∴∠N=∠M,
    ∵∠NCP=∠MCB,
    ∴∠CPN=∠CBM,
    ∵AB∥CD,∠BCD=120°,
    ∴∠CPN=∠CBM=120°.
    本题主要考查四边形的综合问题,解题的关键是掌握平行四边形的性质、等边三角形的判定与性质、直角三角形的性质及分类讨论思想的运用.
    18、(1)见解析;(2)AC=BD.
    【解析】
    探究:连结AC,由四个中点可得EF∥AC且EF=AC、GH∥AC且GH=AC,据此可得EF∥GH,且EF=GH,从而得证;
    应用:添加AC=BD,连接BD,由EF=AC、EH=BD,且AC=BD知EF=EH,根据四边形EFGH是平行四边形即可得证;
    【详解】
    探究:平行四边形,
    证明:连结AC,
    ∵E、F分别是AB、BC的中点,
    ∴EF∥AC,且EF=AC.
    ∵G、H分别是CD、AD的中点,
    ∴GH∥AC,且GH=AC.
    ∴EF∥GH,且EF=GH.
    ∴四边形EFGH是平行四边形.
    ​应用:
    AC=BD;
    连接BD,
    ∵EF=AC、EH=BD,且AC=BD,
    ∴EF=EH,
    又∵四边形EFGH是平行四边形,
    ∴四边形EFGH是菱形.
    故答案为:AC=BD.
    本题主要考查四边形的综合问题,解题的关键是掌握中位线定理,平行四边形、菱形的判定方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据题意可得AB=2,∠ADE=∠CDF,可证△ADE≌△DCF,可得CF=1,根据勾股定理可得EF的长.
    【详解】
    ∵ABCD是正方形
    ∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°
    ∵DF⊥DE
    ∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°
    ∴∠ADE=∠CDF,且AD=CD,∠A=∠DCF=90°
    ∴△ADE≌△CDF(SAS)
    ∴AE=CF=1
    ∵E是AB中点
    ∴AB=BC=2
    ∴BF=3
    在Rt△BEF中,EF==
    故答案为.
    本题考查了正方形的性质,全等三角形的判定,勾股定理,证明△ADE≌△DCF是本题的关键.
    20、3
    【解析】
    【分析】把x=2代入二次根式进行计算即可得.
    【详解】把x=2代入得,
    ==3,
    故答案为:3.
    【点睛】本题考查了二次根式的值,准确计算是解题的关键.
    21、-2
    【解析】
    利用根与系数的关系求出两根之和与两根之积,代入所求式子中计算即可求出值.
    【详解】
    解:依题意得:x1+x1=-m,x1x1=-1.
    所以x1+x1-x1x1=-m-(-1)=6
    所以m=-2.
    故答案是:-2.
    此题考查了一元二次方程根与系数的关系,一元二次方程ax1+bx+c=0(a≠0)的根与系数的关系为:x1+x1=-,x1•x1=.
    22、k<1
    【解析】
    分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
    详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
    ∴n=﹣,
    ∴当n>1时,﹣>1,
    解得,k<1,
    故答案为k<1.
    点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    23、9或10.1
    【解析】
    根据等腰△ABC中,当a为底,b,c为腰时,b=c,得出△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,解方程求出k=2,则b+c=2k+1=1;当a为腰时,则b=4或c=4,然后把b或c的值代入计算求出k的值,再解方程进而求解即可.
    【详解】
    等腰△ABC中,当a为底,b,c为腰时,b=c,若b和c是关于x的方程x2-(2k+1)x+1(k-)=0的两个实数根,
    则△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,
    解得:k=2,
    则b+c=2k+1=1,
    △ABC的周长为4+1=9;
    当a为腰时,则b=4或c=4,
    若b或c是关于x的方程x2-(2k+1)x+1(k-)=0的根,
    则42-4(2k+1)+1(k-)=0,
    解得:k=,
    解方程x2-x+10=0,
    解得x=2.1或x=4,
    则△ABC的周长为:4+4+2.1=10.1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(-1,3);(2);(3) (-,0).
    【解析】
    (1)把A、B的坐标代入函数解析式,求出函数解析式,即可求出D点的坐标;
    (2)根据面积公式求出面积即可;
    (3)找出P点的位置,求出直线EC的解析式,即可求出PD点的坐标.
    【详解】
    解:(1)把A(-3,0)代入y=x+m,得m=,
    ∵直线y=-x+2与x轴、y轴分别交于B、C两点,
    ∴B点坐标为(2,0),C(0,2),
    解方程组得:,
    ∴D点坐标为(-1,3);
    故答案为(-1,3);
    (2)∵直线y=-x+2与x轴、y轴分别交于B、C两点,
    ∴B点坐标为(2,0),C(0,2),
    ∴四边形AOCD的面积=S△DAB-S△COB
    =×5×3-×2×2
    =;
    (3)作D关于x轴的对称点E,连接CE,交x轴于P,此时PD+PC的值最小,
    ∵D点坐标为(-1,3),
    ∴E点的坐标为(-1,-3),
    设直线CE的解析式为y=ax+b,
    把E、C的坐标代入得:
    解得:a=5,b=2,
    即直线CE的解析式为y=5x+2,
    当y=0时,x=-,
    即P点的坐标为(-,0).
    本题考查了函数图象上点的坐标特征,轴对称-最短路线问题等知识点,能综合运用知识点进行计算是解此题的关键.
    25、
    【解析】
    根据菱形的性质得到AO的长度,由等边三角形的性质和勾股定理,得到BO的长度,由菱形的面积公式可求解.
    【详解】
    解:菱形ABCD中,BA=BC,∠ABC=60°,
    ∴三角形ABC为等边三角形,
    ∴AC=AB=10;
    ∴AO=5,
    ∴BO==5
    ∴BD=10
    ∴菱形ABCD的面为S=
    本题考查了菱形的性质,熟练运用菱形的面积公式是本题的关键.
    26、 (1)见解析;(2)①1; ②.
    【解析】
    试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;
    (2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;
    ②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的长.
    试题解析:(1)证明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四边形ADCE是平行四边形.∵AD是BC边上的高,∴∠ADC=90°.∴□ADCE是矩形.
    (2)①解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四边形ADCE的面积是AD×DC=12×8=1.
    ②当BC=时,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.
    点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.
    题号





    总分
    得分
    批阅人
    成绩(分)
    24
    25
    26
    27
    28
    29
    30
    人数(人)
    6
    5
    5
    8
    7
    7
    4
    相关试卷

    2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省台州市天台县坦头中学2022年九年级数学第一学期期末检测试题含解析: 这是一份浙江省台州市天台县坦头中学2022年九年级数学第一学期期末检测试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中,属于必然事件的是等内容,欢迎下载使用。

    浙江省台州市天台县坦头中学2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析: 这是一份浙江省台州市天台县坦头中学2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析,共23页。试卷主要包含了下列计算错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map