2024年浙江省温州市温州实验中学数学九年级第一学期开学达标检测模拟试题【含答案】
展开
这是一份2024年浙江省温州市温州实验中学数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,经过点的直线与直线相交于点,则不等式的解集为( )
A.B.C.D.
2、(4分)下列条件,不能判断四边形是平行四边形的是( )
A.,B.,
C.,D.,
3、(4分)已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()
A.11B.6.5C.7D.7.5
4、(4分)若分式的值为0,则b的值为( )
A.1B.-1C.±1D.2
5、(4分)函数中,自变量x的取值范围是
A.x>﹣1B.x<﹣1C.x≠﹣1D.x≠0
6、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
7、(4分)若x>y,则下列不等式中不一定成立的是( )
A.x﹣1>y﹣1B.2x>2yC.x+1>y+1D.x2>y2
8、(4分)如图,是二次函数图象的一部分,下列结论中:
①;②;③有两个相等的实数根;④.其中正确结论的序号为( )
A.①②B.①③C.②③D.①④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.
10、(4分)一组数据2,3,3,1,5的众数是_____.
11、(4分)将的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是正方形的顶点都在格点上,若直线与正方形有公共点,则的取值范围是________________.
12、(4分)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;
13、(4分)直角三角形两直角边的长分别为3和4,则此直角三角形斜边上的中线长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .
(1)求证: △ABE≌△CDF ;
(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.
15、(8分)由中宣部建设的“学习强国”学习平台正式上线。这是推动新时代中国特色社会主义思想、推进马克思主义学习型政党和学习型社会建设的创新举措.某基层党组织随机抽取了部分党员的某天的学习成绩并进行了整理,分成5个小组(表示成绩,单位:分,且),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2、第5两组测试成绩人数直方图的高度比为,请结合下列图标中相关数据回答下列问题:
(1)填空:_____,______;
(2)补全频数分布直方图;
(3)这次积分的中位数落在第______组;
(4)已知该党组织共有党员225人;请估计当天学习积分获得“优秀”等级()的党员有多少人?
16、(8分)先化简,再求值:其中
17、(10分)如图,是一块四边形绿地的示意图,其中AB长为24米,BC长15米,CD长为20米,DA长7米,∠C=90°,求绿地ABCD的面积.
18、(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,将点向右平移3个单位所对应的点的坐标是__________.
20、(4分)如图,在ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________ .
21、(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.
22、(4分)若关于的两个方程与有一个解相同,则__________.
23、(4分)某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知平面直角坐标系中,直线与x轴交于点A,与y轴交于B,与直线y=x交于点C.
(1)求A、B、C三点的坐标;
(2)求△AOC的面积;
(3)已知点P是x轴正半轴上的一点,若△COP是等腰三角形,直接写点P的坐标.
25、(10分)列方程或方程组解应用题:
为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)
26、(12分)若点,与点关于轴对称,则__.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先利用直线y=-2x+2的解析式确定A点坐标,然后结合函数特征写出直线y=kx+b在直线y=-2x+2上方所对应的自变量的范围即可.
【详解】
解:把代入y=﹣2x+2得﹣2m+2=,解得m=﹣,
当x>﹣时,﹣2x+2<kx+b.
故选C.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
2、D
【解析】
根据平行四边形的判定方法一一判断即可.
【详解】
解:A、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;
B、由AB=CD,BC=AD可以判断四边形ABCD是平行四边形;
C、由∠A=∠C,AD∥BC,可以推出∠B=∠D,可以判断四边形ABCD是平行四边形;
D、由AB∥CD,∠A=∠B不可以判断四边形ABCD是平行四边形;
故选:D.
本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.
3、A
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形BPQC=PQ×EC=5×EC=20,
∴S菱形BPQC=BC•EC,
即20=5•EC,
∴EC=4
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故选A.
此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.
4、A
【解析】
分析:根据分式的分子为零分母不为零,可得答案.
详解:分式的值为0,得
,
解得b=1,b=-1(不符合条件,舍去),
故选A.
点睛:本题考查了分式值为零的条件,分式的分子为零分母不为零是解题关键.
5、C
【解析】
试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.
6、C
【解析】
根据轴对称图形和中心对称图形的概念逐一判断即可.
【详解】
A:是轴对称图形,不是中心对称图形.故错误;
B:不是轴对称图形,是中心对称图形.故错误;
C:是轴对称图形,也是中心对称图形.故正确;
D:是轴对称图形,不是中心对称图形.故错误;
故答案选C.
本题主要考查了轴对称图形和中心对称图形的分辨,熟记轴对称和中心对称的有关概念是解题的关键.
7、D
【解析】
根据不等式的性质逐一进行判断,选项A,在不等式x>y两边都减1,不等号的方向不变,即可判断A的正确性,选项B,在不等式x>y两边都乘上2,不等号的方向不变,即可判断B的正确性;选项C,在不等式x>y两边都加上1,不等号的方向不变,即可判断C的正确性,选项D,可举例说明,例如当x=1,y=-2时,x>y,但x2<y2,故可判断D的正确性,据此即可得到答案.
【详解】
A、不等式的两边减1,不等号的方向不变,故A不符合题意;
B、不等式的两边乘2,不等号的方向不变,故B不符合题意;
C、不等式的两边都加1,不等号的方向不变,故C不符合题意;
D、当0<x<1,y<﹣1时,x2<y2,故D符合题意;
故选D.
本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键;
8、D
【解析】
根据二次函数的性质求解即可.
【详解】
①∵抛物线开口向上,且与y轴交点为(0,-1)
∴a>0,c<0
∵对称轴>0
∴b<0
∴
∴①正确;
②对称轴为x=t,1<t<2,抛物线与x轴的交点为x1,x2.
其中x1为(m,0), x2.为(n,0)
由图可知2<m<3,可知n>-1,
则当x=-1时,y>0,
则
则②错误;
③由图可知c=-1
△=b2—4a(c+1)=b2,且b≠0
∴③错误
④由图可知,对称轴x=
且1<<2
∴
故④正确;
故选D.
本题考查的是二次函数,熟练掌握二次函数的图像是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8
【解析】
【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.
【详解】设另一条对角线的长为x,则有
=16,
解得:x=8,
故答案为8.
【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.
10、3
【解析】
根据众数的定义进行求解即可得.
【详解】
数据2,3,3,1,5中数据3出现次数最多,
所以这组数据的众数是3,
故答案为3.
本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.
11、≤k≤1.
【解析】
分别确定点A和点C的坐标,代入正比例函数的解析式即可求得k的取值范围.
【详解】
解:由题意得:点A的坐标为(1,1),点C的坐标为(1,1),
∵当正比例函数经过点A时,k=1,当经过点C时,k=,
∴直线y=kx(k≠0)与正方形ABCD有公共点,k的取值范围是≤k≤1,
故答案为:≤k≤1.
本题考查了正比例函数的性质,解题的关键是求得点A和点C的坐标,难度不大.
12、
【解析】
首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.
【详解】
作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,∴∠ABD+∠CBE=90°,
又∠DAB+∠ABD=90°,
∴∠BAD=∠CBE,
又AB=BC,∠ADB=∠BEC.
∴△ABD≌△BCE,∴BE=AD=3,
在Rt△BCE中,根据勾股定理,得BC=,
在Rt△ABC中,根据勾股定理,
得AC=
故答案为
本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.
13、2.1.
【解析】
已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据直角三角形斜边上的中线等于斜边的一半即可解题.
【详解】
已知直角三角形的两直角边为3、4,则斜边长为1,
故斜边上的中线长为:1=2.1.
故应填:2.1.
本题考查了勾股定理和直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握基础知识即可解答.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)时,四边形EGCF是矩形,理由见解析.
【解析】
(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;
(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,
∴∠ABE=∠CDF,
∵点E,F分别为OB,OD的中点,
∴BE=OB,DF=OD,
∴BE=DF,
在△ABE和△CDF中,
(2)当AC=2AB时,四边形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,
∴AB=OA,
∵E是OB的中点,
∴AG⊥OB,
∴∠OEG=90°,
同理:CF⊥OD,
∴AG∥CF,
∴EG∥CF,
∵EG=AE,OA=OC,
∴OE是△ACG的中位线,
∴OE∥CG,
∴EF∥CG,
∴四边形EGCF是平行四边形,
∵∠OEG=90°,
∴四边形EGCF是矩形.
本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.
15、(1)故答案为4,32%;(2)图形见解析;(3)第三组;(4)18 (人)
【解析】
(1)根据3组的人数除以3组所占的百分比,可得总人数,进而可求出1组,4组的所占百分比,则a,b的值可求;
(2)由(1)中的数据即可补全频数分布直方图;
(3)50个人的数据中,中位数是第25和26两人的平均数,
(4)用225乘以“优秀”等级()的所占比重即可求解.
【详解】
(1)由题意可知总人数=15÷30%=50(人),
所以4组所占百分比=10÷50×100%=20%,1组所占百分比=5÷50×100%=10%,
因为2组、5组两组测试成绩人数直方图的高度比为4:1,
所以5a=50−5−15−10,
解得a=4,
所以b=16÷50×100%=32%,
故答案为4,32%;
(2)由(1)可知补全频数分布直方图如图所示:
(3) 50个人的数据中,中位数是第25和26两人的平均数,而第25和26两人都出现在第三组,
(4)(人)
此题考查了频数分布表和条形统计图.认真审题找到两个图表中的关联信息,通过明确的信息推出未知的变量是解题关键.
16、
【解析】
先去括号,再把除法统一为乘法把分式化简,再把数代入.
【详解】
解:原式
当时,原式.
本题考查分式的混合运算,通分、分解因式、约分是关键.
17、绿地ABCD的面积为234平方米.
【解析】
连接BD,先根据勾股定理求出BD的长,再由勾股定理的逆定理判定△ABD为直角三角形,则四边形ABCD的面积=直角△BCD的面积+直角△ABD的面积.
【详解】
连接BD.如图所示:
∵∠C=90°,BC=15米,CD=20米,
∴BD===25(米);
在△ABD中,∵BD=25米,AB=24米,DA=7米,
242+72=252,即AB2+BD2=AD2,
∴△ABD是直角三角形.
∴S四边形ABCD=S△ABD+S△BCD
=AB•AD+BC•CD
=×24×7+×15×20
=84+150
=234(平方米);
即绿地ABCD的面积为234平方米.
18、(1)该一次函数解析式为y=x+1;(2)离加油站的路程是10千米.
【解析】
(1)分析题意,首先根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,用总路程减去剩余油量为8升时行驶的路程即可解答本题。
【详解】
(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得,
解得:,
∴该一次函数解析式为y=x+1.
(2)当y=x+1=8时,
解得x=2.
即行驶2千米时,油箱中的剩余油量为8升.
530-2=10千米,
油箱中的剩余油量为8升时,距离加油站10千米.
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
本题主要考查的是一次函数的应用,解题的关键是掌握待定系数法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据平移的性质得出所对应的点的横坐标是1+3,纵坐标不变,求出即可.
【详解】
解:∵在平面直角坐标系中,将点向右平移3个单位,
∴所对应的点的横坐标是1+3=4,纵坐标不变,
∴所对应的点的坐标是,
故答案为:.
本题主要考查对坐标与图形变化-平移的理解和掌握,能根据平移性质进行计算是解此题的关键.
20、
【解析】
先由平行四边形对边相等得AD=BC, 作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.
【详解】
如图,过D作DE⊥AB交AB于E,
∵四边形ABCD为平行四边形,∴AD=BC=2,
△ADE为等腰直角三角形,
,
根据勾股定理得 ,
,
,
,
即AB和CD之间的距离为,
故答案为:
本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.
21、n2+2n
【解析】
试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.
解:第n个图形需要黑色棋子的个数是n2+2n.
故答案为:n2+2n.
22、1
【解析】
首先解出一元二次方程的解,根据两个方程的解相同,把x的值代入第二个方程中,解出a即可.
【详解】
解:解方程得x1=2,x2=−1,
∵x+1≠0,
∴x≠−1,
把x=2代入中得:,
解得:a=1,
故答案为1.
此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,分式方程注意分母要有意义.
23、1
【解析】
根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.
【详解】
解:设当x>18时的函数解析式为y=kx+b,
图象过(18,54),(28,94)
∴,得
即当x>18时的函数解析式为:y=4x-18,
∵102>54,
∴小丽家用水量超过18立方米,
∴当y=102时,102=4x-18,得x=1,
故答案为:1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
二、解答题(本大题共3个小题,共30分)
24、(1)A(-4,0);B(0,2);C(4,4);(2)1;(3)(4,0)或(1,0)或(,0).
【解析】
试题分析:(1)分别根据一次函数x=0或y=0分别得出点A和点B的坐标,将两个方程列成方程组,从而得出点C的坐标;(2)过点C作CD⊥x轴,从而得出AO和CD的长度,从而得出三角形的面积;(3)根据等腰三角形的性质得出点P的坐标.
试题解析:(1)当x=0得y=2,则B(0,2),当y=0得x=-4,则A(-4,0),
由于C是两直线交点,联立直线解析式为
解得:
则点C的坐标为(4,4)
(2)过点C作CD⊥x轴与点D
∴AO=4,CD=4
∴=AO·CD=×4×4=1.
(3)点P的坐标为(4,0)或(1,0)或(,0).
考点:(1)一次函数;(2)等腰三角形的性质
25、3.2克.
【解析】
设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.
【详解】
解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:,
解得:x=3.2,
经检验:x=3.2是原分式方程的解,且符合题意.
答:A4薄型纸每页的质量为3.2克.
本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验.
26、
【解析】
直接利用关于x轴对称点的性质得出a的值进而得出答案.
【详解】
解:点,与点关于轴对称,
.
故答案为:.
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
题号
一
二
三
四
五
总分
得分
学习积分频数分布表
组别
成绩分
频数
频率
第1组
5
第2组
第3组
15
30%
第4组
10
第5组
相关试卷
这是一份2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省温州市数学九年级第一学期开学检测试题【含答案】,共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省温州实验中学数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。