终身会员
搜索
    上传资料 赚现金
    2024年重庆市长寿区川维片区数学九上开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年重庆市长寿区川维片区数学九上开学监测模拟试题【含答案】01
    2024年重庆市长寿区川维片区数学九上开学监测模拟试题【含答案】02
    2024年重庆市长寿区川维片区数学九上开学监测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年重庆市长寿区川维片区数学九上开学监测模拟试题【含答案】

    展开
    这是一份2024年重庆市长寿区川维片区数学九上开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,,,,为边上一动点,于点,于点,则的最小值为( )
    A.2.4B.3C.4.8D.5
    2、(4分)某公司全体职工的月工资如下:
    该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是( )
    A.中位数和众数B.平均数和众数
    C.平均数和中位数D.平均数和极差
    3、(4分)如图,在正方形中,为边上一点,将沿折叠至处, 与交于点,若,则的大小为( )
    A.B.C.D.
    4、(4分)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是( )
    A.B.C.D.
    5、(4分)下列说法正确的是( ).
    A.的平方根是B.是81的一个平方根
    C.0.2是0.4的算术平方根D.负数没有立方根
    6、(4分)在ABCD中,AB=3cm,BC=4cm,则ABCD的周长是( )
    A.5cmB.7cmC.12cmD.14cm
    7、(4分)一组数据8,7,6,7,6,5,4,5,8,6的众数是( )
    A.8B.7C.6D.5
    8、(4分)如图,点A是反比例函数图像上一点,AC⊥x轴于点C,与反比例函数图像交于点B,AB=2BC,连接OA、OB,若△OAB的面积为2,则m+n的值( )
    A.-3B.-4C.-6D.-8
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,菱形ABCD的边长为8cm,∠B=45°,AE⊥BC于点E,则菱形ABCD的面积为_____cm2。
    10、(4分)如图,在矩形中,点为的中点,点为上一点,沿折叠,点恰好与点重合,则的值为______.
    11、(4分)在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.
    12、(4分)如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为_____.
    13、(4分)在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,直线过点,且与,轴的正半轴分別交于点、两点,为坐标原点.
    (1)当时,求直线的方程;
    (2)当点恰好为线段的中点时,求直线的方程.
    15、(8分)(1)已知点A(2,0)在函数y=kx+3的图象上,求该函数的表达式并画出图形;
    (2)求该函数图象与坐标轴围成的三角形的面积.
    16、(8分)阅读下列材料:
    在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.
    下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.
    解:设x2﹣4x=y
    原式=(y+1)(y+7)+9(第一步)
    =y2+8y+16(第二步)
    =(y+4)2(第三步)
    =(x2﹣4x+4)2(第四步)
    请根据上述材料回答下列问题:
    (1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;
    A.提取公因式法 B.平方差公式法 C.完全平方公式法
    (2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;
    (3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
    17、(10分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
    18、(10分)如图,在四边形ABCD中,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E,F,且DE=BF,求证:
    (1)AE=CF;
    (2)四边形ABCD是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,函数y=kx+b(k≠0)的图象经过点(1,2),则不等式kx+b>2的解集为______.
    20、(4分)如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.
    21、(4分)用配方法解一元二次方程x2-mx=1时,可将原方程配方成(x-3)2=n,则m+n的值是 ________ .
    22、(4分)化简:= .
    23、(4分)已知:一次函数的图像在直角坐标系中如图所示,则______0(填“>”,“<”或“=”)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
    (1)直接写出点M的坐标为 ;
    (2)求直线MN的函数解析式;
    (3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.
    25、(10分)邻居张老汉养了一群鸡,现在要建一长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长34米.请同学解决以下问题:
    (1)若设鸡场的面积为y平方米,鸡场与墙平行的一边长为x米,请写出y与x之间的函数关系式,并写出x的取值范围;
    (2)当鸡场的面积为160平方米时,鸡场的长与宽分别是多少米?
    (3)鸡场的最大面积是多少?并求出此时鸡场的长与宽分别是多少米?
    26、(12分)平面直角坐标系中,直线y=2kx-2k (k>0)交y轴于点B,与直线y=kx交于点A.
    (1)求点A的横坐标;
    (2)直接写出的x的取值范围;
    (3)若P(0,3)求PA+OA的最小值,并求此时k的值;
    (4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.
    【详解】
    如图,连接BD.
    ∵在△ABC中,AB=8,BC=6,AC=10,
    ∴AB2+BC2=AC2,即∠ABC=90°.
    又∵DE⊥AB于点E,DF⊥BC于点F,
    ∴四边形EDFB是矩形,
    ∴EF=BD.
    ∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,
    ∴EF的最小值为4.8,
    故选C.
    此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
    2、A
    【解析】
    根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项.
    【详解】
    ∵数据的极差为16800,较大,
    ∴平均数不能反映数据的集中趋势,
    ∴普通员工最关注的数据是中位数及众数,
    故选A.
    本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大.
    3、B
    【解析】
    首先利用正方形性质得出∠B=∠BCD=∠BAD=90°,从而得知∠ACB=∠BAC=45°,然后进一步根据三角形外角性质可以求出∠BEF度数,再结合折叠性质即可得出∠BAE度数,最后进一步求解即可.
    【详解】
    ∵四边形ABCD为正方形,
    ∴∠B=∠BCD=∠BAD=90°,
    ∴∠ACB=∠BAC=45°,
    ∵∠EFC=69°,
    ∴∠BEF=∠EFC+∠ACB=114°,
    由折叠性质可得:∠BEA=∠BEF=57°,
    ∴∠BAE=90°−57°=33°,
    ∴∠EAC=45°−33°=12°,
    故选:B.
    本题主要考查了正方形性质与三角形外角性质的综合运用,熟练掌握相关概念是解题关键.
    4、D
    【解析】
    根据图像分析不同时间段的水面上升速度,进而可得出答案.
    【详解】
    已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.
    能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.
    5、B
    【解析】
    依据平方根、算术平方根、立方根的性质解答即可.
    【详解】
    A.的平方根是±,故A错误,;
    B. −9是81的一个平方根,故B正确,;
    C. 0.04的算术平方根是0.2,故C错误,;
    D. 负数有立方根,故D错误.
    故选:B.
    此题考查平方根,算术平方根,立方根,解题关键在于掌握运算法则.
    6、D
    【解析】
    因为平行四边形的两组对边分别相等,则平行四边形ABCD的周长为2(AB+BC),根据已知即可求出周长.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD,BC=AD,
    ∴平行四边形ABCD的周长为2(AB+BC)=2×7=14cm.
    故选:D.
    此题主要考查平行四边的性质:平行四边形的两组对边分别相等.
    7、C
    【解析】
    根据众数的含义:在一组数据中出现次数最多的数叫做这组数据的众数.
    【详解】
    在这组数据中6出现3次,次数最多,所以众数为6,故选:C.
    本题考查众数的定义,学生们熟练掌握即可解答.
    8、D
    【解析】
    由AB=2BC可得 由于△OAB的面积为2可得,
    由于点A是反比例函数可得由于m<0
    可求m,n的值,即可求m+n的值。
    【详解】
    解:∵AB=2BC

    ∵△OAB的面积为2
    ∴,
    ∵点A是反比例函数

    又∵m<0
    ∴m=-6
    同理可得:n=-2
    ∴m+n=-8
    故答案为:D
    本题考查了反比例函数与几何图形,熟练掌握反比例函数与三角形面积的关系是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、32
    【解析】
    根据AE⊥BC,∠B=45°知△AEB为等腰直角三角形.在Rt△AEB中,根据勾股定理即可得出AE的长度,根据面积公式即可得出菱形ABCD的面积.
    【详解】
    四边形ABCD为菱形,则AB=BC=CD=DA=8cm,
    ∵AE⊥BC且∠B=45°,
    ∴△AEB为等腰直角三角形,
    ∴AE=BE,
    在△AEB中,根据勾股定理可以得出+=,
    ∴2=,
    ∴AE====4,
    ∴菱形ABCD的面积即为BC×AE=8×4=32.
    本题目主要考查菱形的性质及面积公式,本题的解题关键在于通过勾股定理得出菱形的高AE的长度.
    10、
    【解析】
    【分析】由矩形性质可得AB=CD,BC=AD;由对折得AB=BE,设AB=x,根据勾股定理求出BC关于x的表达式,便可得到.
    【详解】设AB=x,在矩形ABCD中, AB=CD=x,BC=AD;
    因为,E为CD的中点,
    所以,CE=,
    由对折可知BE=AB=x.
    在直角三角形BCE中
    BC=,
    所以,.
    故答案为图(略),
    【点睛】本题考核知识点:矩形性质,轴对称. 解题关键点:利用轴对称性质得到相等线段,利用勾股定理得到BE和BC的关系.
    11、1+2
    【解析】
    取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.
    【详解】
    如图1,取DE的中点N,连结ON、NG、OM.
    ∵∠AOB=90°,
    ∴OM=AB=2.
    同理ON=2.
    ∵正方形DGFE,N为DE中点,DE=1,
    ∴.
    在点M与G之间总有MG≤MO+ON+NG(如图1),
    如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,
    ∴线段MG取最大值1+2.
    故答案为:1+2.
    此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.
    12、20
    【解析】
    设AB=CD=a,AD=BC=b,根据三角形的面积依次求出BE,EC,CF,DF的长度,再根据△ADF面积为5,可列方程,可求ab的值,即可得矩形ABCD的面积.
    【详解】
    设AB=CD=a,AD=BC=b
    ∵S△ABE=6
    ∴AB×BE=6
    ∴BE=
    ∴EC=b﹣
    ∵S△EFC=2
    ∴EC×CF=2
    ∴CF=
    ∴DF=a﹣
    ∵S△ADF=5
    ∴AD×DF=5
    ∴b(a﹣)=10
    ∴(ab)2﹣26ab+120=0
    ∴ab=20或ab=6(不合题意舍去)
    ∴矩形ABCD的面积为20
    故答案为20
    此题考查了面积与等积变换的知识以及直角三角形与矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.
    13、1
    【解析】
    根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.
    【详解】
    解:由图可得,
    这组数据分别是:24,24,1,1,1,30,
    ∵1出现的次数最多,
    ∴这组数据的众数是1.
    故答案为:1.
    本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.
    三、解答题(本大题共5个小题,共48分)
    14、(1)方程为;的方程为.
    【解析】
    (1)设,可知,,用待定系数法即可求出方程,得到解析式.
    (2)过作轴于点,可得,可以推出PC为的中位线,可得,可得把A(2,0)和坐标代人可得直线的方程.
    【详解】
    (1)设,则,,设方程为,
    把代入方程得,把代入方程得
    再把代入得,
    方程为.
    (2)过作轴于点,则的坐标,
    为中点
    为的中位线,
    为中点,

    设方程为,把和坐标代人
    可得
    的方程为.
    本题考查了用待定系数法函数解析式,解题的关键是找到函数图像上的点,将点代入得方程组,解方程即可得函数解析式.
    15、(1) ,画图形见解析;(2)
    【解析】
    (1)将点代入,运用待定系数法求解即可;
    (2)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.
    【详解】
    解:(1)∵点A(2,0)在函数y=kx+3的图象上,
    ∴2k+3=0,解得k=,
    函数解析式为,
    图像如下图所示:
    (2)在中,令y=0,即,解得x=2,
    令x=0,即,解得y=3,
    ∴函数图象与x轴、y轴分别交于点B(2,0)和A(0,3),
    ∴该函数图象与坐标轴围成的三角形的面积即为三角形AOB的面积,
    ∴.
    本题考查待定系数法求函数解析式及三角形的面积的知识,难度不大,关键是正确得出函数解析式及坐标与线段长度的转化.
    16、(1)C;(2)(x﹣2)1;(3)(x+1)1.
    【解析】
    (1)根据完全平方公式进行分解因式;
    (2)最后再利用完全平方公式将结果分解到不能分解为止;
    (3)根据材料,用换元法进行分解因式.
    【详解】
    (1)故选C;
    (2)(x2﹣1x+1)(x2﹣1x+7)+9,设x2﹣1x=y,则:
    原式=(y+1)(y+7)+9=y2+8y+16=(y+1)2=(x2﹣1x+1)2=(x﹣2)1.
    故答案为:(x﹣2)1;
    (3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)1.
    本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.
    17、2.
    【解析】
    根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.
    【详解】
    解:
    原式
    =2
    本题考核知识点:二次根式化简求值. 解题关键点:掌握乘法公式.
    18、(1)见解析;(2)见解析
    【解析】
    (1)直接利用HL证明Rt△DEC≌Rt△BFA即可;
    (2)利用全等三角形的性质结合平行四边形的判定方法分析得出答案.
    【详解】
    证明:(1)∵DE⊥AC,BF⊥AC,
    ∴∠DEC=∠BFA=90°,
    在Rt△DEC和Rt△BFA中,,
    ∴Rt△DEC≌Rt△BFA(HL),
    ∴EC=AF,
    ∴EC-EF=AF-EF,即AE=FC;
    (2)∵Rt△DEC≌Rt△BFA,
    ∴∠DCE=∠BAF,
    ∴AB∥DC,
    又∵AB=DC,
    ∴四边形ABCD是平行四边形.
    此题主要考查了全等三角形的判定和性质以及平行四边形的判定,正确得出Rt△DEC≌Rt△BFA是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x>1
    【解析】
    观察函数图象得到即可.
    【详解】
    解:由图象可得:当x>1时,kx+b>2,
    所以不等式kx+b>2的解集为x>1,
    故答案为:x>1.
    本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    20、y=x+9.
    【解析】
    根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.
    【详解】
    ∵OC=9,,
    ∴BC=15,
    ∵四边形OABC是矩形,
    ∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,
    ∴C(0,9),
    ∵折叠,
    ∴B′C=BC=15,B′D=BD,
    在Rt△COB′中,OB′==12,
    ∴AB′=15-12=3,
    设AD=m,则B′D=BD=9-m,
    Rt△AB′D中,AD2+B′A2=B′D2,
    即m2+32=(9-m)2,
    解得m=4,
    ∴D(15,4)
    设CD所在直线解析式为y=kx+b,
    把C、D两点坐标分别代入得:,
    解得:,
    ∴CD所在直线解析式为y=x+9,
    故答案为:y=x+9.
    本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.
    21、16
    【解析】
    因为配方成的方程和原方程是等价的,故只要把两个方程展开合并,根据方程的每项系数相等列式求解即可求出m+n的值.
    【详解】
    解:由题意得: x2-mx-1=(x-3)2-n=x2-6x+9-n,
    则-m=-6,∴m=6,
    -1=9-n, ∴n=10,
    ∴m+n=10+6=16.
    故答案为:16
    本题考查了一元二次方程,等价方程的对应项及其系数相同,正确理解题意是解题的关键.
    22、2
    【解析】
    根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
    【详解】
    ∵22=4,∴=2.
    本题考查求算术平方根,熟记定义是关键.
    23、>
    【解析】
    根据图像与y轴的交点可知b<0,根据y随x的增大而减小可知k<0,从而根据乘法法则可知kb>0.
    【详解】
    ∵图像与y轴的交点在负半轴上,
    ∴b<0,
    ∵y随x的增大而减小,
    ∴k<0,
    ∴kb>0.
    故答案为>.
    本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(﹣2,0);(2)y=2x+1;(2)y=2x+2
    【解析】
    (1)由点N(0,1),得出ON=1,再由ON=2OM,求得OM=2,从而得出点M的坐标;
    (2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;
    (2)根据题意求得A的纵坐标,代入(2)求得的解析式建立方程,求得答案即可.
    【详解】
    (1)∵N(0,1),ON=2OM,∴OM=2,∴M(﹣2,0).
    故答案为:(﹣2,0);
    (2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,1)分别代入上式,得:,解得:k=2,b=1,∴直线MN的函数解析式为:y=2x+1.
    (1)把x=﹣1代入y=2x+1,得:y=2×(﹣1)+1=2,即点A(﹣1,2),所以点C(0,2),∴由平移后两直线的k相同可得:平移后的直线为y=2x+2.
    本题考查了待定系数法求函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是本题的关键.
    25、(1)y= -x2+18x(2【解析】
    (1)用含x的式子表示鸡场与墙垂直的一边长,根据矩形面积公式即可写出函数关系式;
    (2)根据(1)所得关系式,将y=2代入即可求解;
    (3)求出函数的最大值,使得面积取最大值即可求解.
    【详解】
    解:(1)根据题意,鸡场与墙平行的一边长为x米,可得鸡场与墙垂直的一边长为米,即(18-)米,
    可得y=x(18-)= -x2+18x(2(2)令y=2,即-x2+18x=2,
    解得x1=1,x2=20(不合题意,舍去),所以x=1.
    当x=1时,18-=2.
    所以,鸡场的长与宽分别为1米、2米;
    (3)对于y== -x2+18x,a= -<0,所以函数有最大值, 当x= -=18时,函数有最大值,最大值y=12
    当x=18时,18-=3.
    所以鸡场的最大面积为12平方米,此时鸡场的长与宽分别为18米、3米.
    本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.
    26、(1)点横坐标为2;(2);(3);(4)或.
    【解析】
    (1)联立两直线方程即可得出答案;
    (2)先根据图像求出k的取值范围,再解不等式组即可得出答案;
    (3)先求出点关于直线的对称点为的坐标,连接交直线于点,此时最小,根据将和P的坐标求出直线的解析式,再令x=2,求出y的值,即可得出点A的坐标,再将点A的坐标代入y=kx中即可得出答案;
    (4)根据题意得出△ABC为等腰三角形,且BC为腰,再根据A、B和C的坐标分别求出AB、BC和AC的长度,分情况进行讨论:①当时,②当时,即可得出答案.
    【详解】
    解:(1)根据题意得
    ,解得
    点横坐标为2;
    (2)由图像可知k>0
    ∴由2kx-2k>0,可得x>1;由2kx-2k
    (3)如图,点关于直线的对称点为;
    连接交直线于点,此时最小,
    其值为;
    设直线的解析式为y=ax+b
    将和P的坐标代入得:
    解得
    ∴直线的解析式为,
    当x=2时,y=
    .即,;
    (4)以为顶点的四边形是以为一条边的菱形,
    为等腰三角形,且为腰;
    或,
    ①当时,,,解得;
    ②当时,,,
    解得.

    本题考查的是一次函数的综合,难度较大,涉及到了三角形边的性质、两点间的距离公式和等腰三角形等相关知识点,需要熟练掌握.
    题号





    总分
    得分
    批阅人
    月工资(元)
    18000
    12000
    8000
    6000
    4000
    2500
    2000
    1500
    1200
    人数
    1(总经理)
    2(副总经理)
    3
    4
    10
    20
    22
    12
    6
    相关试卷

    重庆市长寿区川维片区2023年数学八年级第一学期期末统考试题【含解析】: 这是一份重庆市长寿区川维片区2023年数学八年级第一学期期末统考试题【含解析】,共22页。试卷主要包含了若点A在y轴上,则点B位于等内容,欢迎下载使用。

    重庆市长寿区川维片区2023年八年级数学第一学期期末学业水平测试试题【含解析】: 这是一份重庆市长寿区川维片区2023年八年级数学第一学期期末学业水平测试试题【含解析】,共17页。试卷主要包含了因式分解x2+mx﹣12=,已知不等式组的解集为,则的值为,下列长度的线段能组成三角形的是,下列关于一次函数等内容,欢迎下载使用。

    2023-2024学年重庆市长寿区川维片区八上数学期末学业质量监测试题含答案: 这是一份2023-2024学年重庆市长寿区川维片区八上数学期末学业质量监测试题含答案,共6页。试卷主要包含了下列运算结果正确的是,如图,已知棋子“车”的坐标为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map