2024年淄博市重点中学九上数学开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将直线沿轴向下平移1个单位长度后得到的直线解析式为( )
A.B.C.D.
2、(4分)如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠BCE=28°,则∠D=( )
A.28°B.38°C.52°D.62°
3、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:
该店主决定本周进货时,增加了一些 尺码的衬衫,影响该店主决策的统计量是( )
A.众数B.方差C.平均数D.中位数
4、(4分)一次函数y=kx+1,y随x的增大而减小,则一次函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是( )
A.B.
C.D.
6、(4分)已知一次函数y=ax+b(a、b为常数且a≠0)的图象经过点(1,3)和(0,-2),则a-b的值为( )
A.-1B.-3C.3D.7
7、(4分)关于的一元二次方程有两个实数根,则的取值范围是( )
A.B.C.且D.且
8、(4分)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工
作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的
图象大致为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
10、(4分)函数的自变量的最大值是______.
11、(4分)使根式有意义的x的取值范围是___.
12、(4分)如图,将长方形纸片折叠,使边落在对角线上,折痕为,且点落在对角线处.若,,则的长为_____.
13、(4分)若a<0,则化简的结果为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在中,,,点是的中点,点是射线上一点,于点,且,连接,作于点,交直线于点.
(1)如图(1),当点在线段上时,判断和的数量关系,并加以证明;
(2)如图(2),当点在线段的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当和面积相等时,点与点之间的距离;如果不成立,请说明理由.
15、(8分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
16、(8分)已知关于x的一元二次方程x2﹣(n+3)x+3n=1.求证:此方程总有两个实数根.
17、(10分)节约用水和合理开发利用水资源是每个公民应尽的责任和义务,为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段引导市民节约用水.某市规定如下用水收费标准:每户每月的用水量不超过6m3时,按a元/ m3收费;超过6m3时,超过的部分按b元/ m3收费.该市某户居民今年2月份的用水量为9m3,缴纳水费27元;3月份的用水量为11m3,缴纳水费37元.
(1)求a、b的值.
(2)若该市某户居民今年4月份的用水量为13.5 m3,则应缴纳水费多少元?
18、(10分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.
(1)当时,判断的形状,并说明理由;
(2)求的度数;
(3)请你探究:当为多少度时,是等腰三角形?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “若实数满足,则”,能够说明该命题是假命题的一组的值依次为_.
20、(4分)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.
21、(4分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为 .
22、(4分)已知一个钝角的度数为 ,则x的取值范围是______
23、(4分)如图,正方形 ABCD 的顶点 C, A 分别在 x 轴, y 轴上, BC 是菱形 BDCE 的对角线.若 BC 6, BD 5, 则点 D 的坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)知y+3与5x+4成正比例,当x=1时,y=—18,
(1)求y关于x的函数关系。
(2)若点(m,—8)在此图像上,求m的值。
25、(10分)解不等式组:(1); (2).
26、(12分)阅读材料:
关于的方程:
的解为:,
(可变形为)的解为:,
的解为:,
的解为:,
…………
根据以上材料解答下列问题:
(1)①方程的解为 .
②方程的解为 .
(2)解关于方程:
① ()
②()
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
直接根据“左加右减”的原则进行解答即可.
【详解】
解:由“左加右减”的原则可知:把直线y=2x沿y轴向下平移1个单位长度后,其直线解析式为y=2x-1.
故选:A.
本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
2、D
【解析】
由CE⊥AB得出∠CEB=90°,根据三角形内角和定理求出∠B,根据平行四边形的性质即可得出∠D的值.
【详解】
解:∵CE⊥AB,
∴∠CEB=90°,
∵∠BCE=28°,
∴∠B=62°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=62°,
故选:D.
本题考查了三角形的内角和定理,垂直定义和平行四边形的性质,能求出∠B的度数和根据平行四边形的性质得出∠B=∠D是解此题的关键.
3、A
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
解:由于众数是数据中出现次数最多的数,
故影响该店主决策的统计量是众数.
故选:A.
本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.掌握以上知识是解题的关键.
4、C
【解析】
根据函数的增减性及解析式判断函数图象所经过的象限即可.
【详解】
∵一次函数y=kx+1,y随x的增大而减小,∴k<0,
∵1>0,∴函数图象经过一、二、四象限.
故选C.
首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b中,
当k>0,b>0时,函数图象过一、二、三象限,y随x增大而增大;
当k>0,b<0时,函数图象过一、三、四象限,y随x增大而增大;
当k<0,b>0时,函数图象过一、二、四象限,y随x增大而减小;
当k<0,b<0时,函数图象过二、三、四象限,y随x增大而减小.
5、B
【解析】
由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可.
【详解】
解:设原计划每天生产x台机器,根据题意得:
.
故选B.
读懂题意,用含x的代数式表达出原来生产480台机器所需时间为天和现在生产600台机器所需时间为天是解答本题的关键.
6、D
【解析】
将点(0, -2)代入该一次函数的解析式,得
,即b=-2.
将点(1, 3)代入该一次函数的解析式,得
,
∵b=-2,
∴a=5.
∴a-b=5-(-2)=7.
故本题应选D.
7、D
【解析】
分析:根据一元二次方程根的判别式
进行计算即可.
详解:根据一元二次方程一元二次方程有两个实数根,
解得:,
根据二次项系数 可得:
故选D.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
8、D
【解析】
根据题意对浆洗一遍的三个阶段的洗衣机内的水量分析得到水量与时间的函数图象,然后即可选择:
每浆洗一遍,注水阶段,洗衣机内的水量从1开始逐渐增多;清洗阶段,洗衣机内的水量不变且保持一段时间;排水阶段,洗衣机内的水量开始减少,直至排空为1.纵观各选项,只有D选项图象符合.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.
【详解】
解:这个调查的样本是1名考生的数学成绩,故样本容量是1.
故答案为1.
本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.
10、1
【解析】
根据二次根式的性质,被开方数大于等于0可知:1-x≥0,解得x的范围即可得出x的最大值.
【详解】
根据题意得:1-x≥0,
解得:x≤1,
∴自变量x的最大值是1,
故答案为1.
本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数为非负数.
11、
【解析】
解:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,
必须
解得:
故答案为:.
12、1.5
【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC-CD′=2,AE=4-x,再根据勾股定理可得方程22+x2=(4-x)2,再解方程即可.
【详解】
∵AB=3,AD=4,
∴DC=3,BC=4
∴AC==5,
根据折叠可得:△DEC≌△D'EC,
∴D'C=DC=3,DE=D'E,
设ED=x,则D'E=x,AD'=AC−CD'=2,AE=4−x,
在Rt△AED'中:(AD')2+(ED')2=AE2,
即22+x2=(4−x)2,
解得:x=1.5.
故ED的长为1.5.
本题考查折叠问题、矩形的性质和勾股定理,解题的关键是能根据折叠前后对应线段相等,表示出相应线段的长度,然后根据勾股定理列方程求出线段的长度.
13、-a
【解析】
直接利用二次根式的化简的知识求解即可求得答案.
【详解】
∵a<0,∴=|a|=﹣a.
故答案为﹣a.
本题考查了二次根式的化简.注意=|a|.
三、解答题(本大题共5个小题,共48分)
14、(1),证明见解析;(2)依然成立,点与点之间的距离为.理由见解析.
【解析】
(1)做辅助线,通过已知条件证得与是等腰直角三角形.证出,利用全等的性质即可得到.
(2)设AH,DF交于点G,可根据ASA证明△FCE≌△HFG,从而得到,当和均为等腰直角三角形当他们面积相等时,.利用勾股定理可以求DE、CE的长,即可求出CE的长,即可求得点与点之间的距离.
【详解】
(1)
证明:延长交于点
∵在中,,,
∴
∵于点,且,
∴,与是等腰直角三角形.
∴,,,
∴,
∵点是的中点,∴,∴
∴
∵于点,∴,∴
∴
∴
∴;
(2)依然成立
理由:设AH,DF交于点G,
由题意可得出:DF=DE,
∴∠DFE=∠DEF=45°,
∵AC=BC,
∴∠A=∠CBA=45°,
∵DF∥BC,
∴∠CBA=∠FGB=45°,
∴∠FGH=∠CEF=45°,
∵点D为AC的中点,DF∥BC,
∴DG=BC,DC=AC,
∴DG=DC,
∴EC=GF,
∵∠DFC=∠FCB,
∴∠GFH=∠FCE,
在△FCE和△HFG中
,
∴△FCE≌△HFG(ASA),
∴HF=FC.
由(1)可知和均为等腰直角三角形
当他们面积相等时,.
∴
∴
∴点与点之间的距离为.
本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.
15、(1)证明见解析(2)△CEF是直角三角形
【解析】
(1)由正方形的性质、等腰三角形的性质可得AB=CB,BE=BF,再通过等量相减,即可得出∠ABF=∠CBE,由SAS即可证出△ABF≌△CBE;
(2)求∠CEF=90°,即可证出△CEF是直角三角形.
证明:(1)∵四边形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有 ,
∴△ABF≌△CBE(SAS).
(2)△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°﹣∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,
∴△CEF是直角三角形.
16、见解析.
【解析】
利用根的判别式△≥1时,进行计算即可
【详解】
△=,
所以,方程总有两个实数根.
此题考查根的判别式,掌握运算法则是解题关键
17、(1);(2).
【解析】
(1)该市居民用水基本价格为a元/米1,超过6米1部分的价格为b元/米1,根据2月份和1月份的缴费情况列出a和b的二元一次方程组,求出a和b的值即可;
(2)直接根据(1)求出答案即可.
【详解】
解:⑴根据题意得
,
解得
答:该市居民用水基本价格为2元/米1,超过6米1部分的价格为5元/米1.
⑵ 6×2+(11.5-6)×5=49.5(元).
答:该市某居民今年4月份的用水量为11.5立方米,则应缴纳水费49.5元.
本题主要考查了二元一次方程组的应用,解答本题的关键是根据题意列出a和b的二元一次方程组,此题难度不大.
18、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.
【解析】
(1)由旋转可以得出和均为等边三角形 ,再根据求出,进而可得为直角三角形;
(2)因为进而求得,根据,即可求出求的度数;
(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.
【详解】
解:(1)为直角三角形,理由如下:
绕顺时针旋转得到,
和均为等边三角形,,,,
,
为直角三角形;
(2)由(1)知:,
,
,
,
;
(3)∵∠AOB=110°,∠BOC=α
∴∠AOC=250°-a.
∵△OCD是等边三角形,
∴∠DOC=∠ODC=60°,
∴∠ADO=a-60°,∠AOD=190°-a,
当∠DAO=∠DOA时,
2(190°-a)+a-60°=180°,
解得:a=140°
当∠AOD=ADO时,
190°-a=a-60°,
解得:a=125°,
当∠OAD=∠ODA时,
190°-a+2(a-60°)=180°,
解得:a=110°
∴α=110°,α=140°,α=125°.
本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1,2,1
【解析】
列举一组数满足a<b<c,不满足a+b<c即可.
【详解】
解:当a=1,b=2,c=1时,满足a<b<c,不满足a+b<c,
所以说明该命题是假命题的一组a,b,c的值依次为1,2,1.
故答案为1,2,1.
本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
20、6
【解析】
根据三角形的中位线性质可得,
21、
【解析】
试题分析:∵AB=12,BC=1,∴AD=1.
∴.
根据折叠可得:AD=A′D=1,∴A′B=13-1=2.
设AE=x,则A′E=x,BE=12-x,
在Rt△A′EB中:,解得:.
22、
【解析】
试题分析:根据钝角的范围即可得到关于x的不等式组,解出即可求得结果.
由题意得,解得.
故答案为
考点:不等式组的应用
点评:本题属于基础应用题,只需学生熟练掌握钝角的范围和一元一次不等式组的解法,即可完成.
23、.
【解析】
过点作于点,根据四边形是菱形可知,可得出是等腰三角形,即可得到,再根据勾股定理求出即可得出结论.
【详解】
过点作于点,
四边形是菱形,
,
是等腰三角形,
点是的中点,
,
,
四边形是正方形,
=6,
6+4=10,
.
故答案为:.
本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出是等腰三角形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) y=x;
(2) m=.
【解析】
(1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
(2)直接把点(m,-8)代入(1)中一次函数的解析式即可.
【详解】
(1)∵y+3与5x+4成正比例,
∴设y+3=k(5x+4),
∵当x=1时,y=−18,
∴−18+3=k(5+4),解得k=,
∴y关于x的函数关系式为: (5x+4)=y+3,即y=x;
(2)∵点(m,−8)在此图象上,
∴−8=m,解得m=.
本题考查一次函数,解题的关键是掌握待定系数法求解析式.
25、(1);(2).
【解析】
(1)根据不等式性质求出不等式的解集,再根据不等式的解集找出不等式组的解集即可;
(2)求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.
【详解】
解:(1)
解不等式①得:
解不等式②得:
∴不等式组的解集为:
(2)
解不等式得:
解不等式得:
∴不等式组的解集为:
本题主要考查了对不等式性质,解一元一次不等式(组)等知识点的理解和掌握,正确解不等式是解此题的关键。
26、(1)①,;②,;(2)①,;②,.
【解析】
试题分析:(1)①令第一个方程中的a=2即可得到答案;
②把(x-1)看成一个整体,利用第一个方程的规律即可得出答案;
(2)①等式两边减去1,把(x-1)和(a-1)分别看成是整体,利用第三个方程的规律即可得出答案;
②等式两边减去2,把(x-2)和(a-2)分别看成是整体,利用第二个方程和第四个方程的规律即可得出答案.
试题解析:
解:(1)①由第一个方程规律可得:x1=2,x2=;
②根据第一个方程规律可得:x-1=3或x-1=,
∴x1=4,x2=;
(2)①方程两边减1得:(x-1)+=(a-1)+ ,
∴x-1=a-1或x-1=,
∴:x1=a,x2=;
②方程两边减2得:(x-2)+=(a-2)+ ,
∴∴x-2=a-2或x-2=,
∴:x1=a,x2=.
点睛:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
尺码
39
40
41
42
43
平均每天销售数量(件)
10
12
20
12
12
2025届安徽阜阳市数学九上开学质量跟踪监视试题【含答案】: 这是一份2025届安徽阜阳市数学九上开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年乌海市重点中学九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024年乌海市重点中学九上数学开学质量跟踪监视模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。