|课件下载
终身会员
搜索
    上传资料 赚现金
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)
    立即下载
    加入资料篮
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)01
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)02
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)03
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)04
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)05
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)06
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)07
    北师大版八年级数学下册同步精品1.1.3 等腰三角形(3)(课件)08
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中1 等腰三角形多媒体教学课件ppt

    展开
    这是一份初中1 等腰三角形多媒体教学课件ppt,共27页。PPT课件主要包含了学习目标,情境导入,文字语言,符号语言,①②③中知一得二,探究新知,等腰三角形的判定,归纳总结,反证法,小明是这样想的等内容,欢迎下载使用。

    1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用。
    1.等腰三角形的两底角相等.(简写成“等边对等角”)
    ∵AB=AC(已知)∴∠B=∠C(等边对等角)
    等腰三角形有哪些性质?
    2.等腰三角形是轴对称图形
    3.等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.(简称“三线合一”)
    ①∵AB=AC,BD=CD∴∠BAD=∠CAD,AD⊥BC
    ②∵AB=AC,∠BAD=∠CAD∴BD=CD,AD⊥BC
    ③∵AB=AC,AD⊥BC∴ BD=CD,∠BAD=∠CAD
    我们知道,如果一个三角形有两条边相等,那么他们所对的角相等。反过来,如果一个三角形有两个角相等,那么它们所对的边有什么关系?
    猜想:若∠B= ∠C,则AB=AC
    做一做:如图,在△ABC中,如果∠B=∠C,那么AB与AC之间有什么关系吗?
    测量后发现AB与AC相等.
    分析:如图,在△ABC中,∠B=∠C,要想证明 AB=AC,只要能构造两个全等的三角形,使AB与AC 成为对应边就可以了.
    证明:有两个角相等的三角形是等腰三角形.
    已知:如图,在△ABC 中, ∠B= ∠C.求证:AB=AC .
    证明: 作AD⊥BC于点D,∴ ∠ADB= ∠ADC=90°.又∵ ∠B= ∠C , AD=AD,∴ △ABD≌△ACD.∴ AB=AC.
    1.判定定理:有两个角相等的三角形是等腰三角形.(简称等角对等边)应用格式:在△ABC中,∵∠B=∠C, ∴AB=AC.
    2.等腰三角形的判定与性质的异同相同点:都是在一个三角形中;区别:判定是由角到边,性质是由边到角.即: .
    例: 已知:如图,AB=DC,BD=CA,BD与CA相交于点E. 求证:△AED是等腰三角形.
    证明:∵AB=DC,BD=CA,AD=DA,
    ∴△ABD≌△DCA(SSS),
    ∴∠ADB=∠DAC(全等三角形的对应角相等),
    ∴AE=DE(等角对等边),
    ∴ △AED是等腰三角形.
    小明认为,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,即在△ABC 中, 如果 ∠B≠∠C,那么AB≠AC.你认为这个结论成立吗?如果成立,请证明.
    如图,在△ABC中,已知∠B≠∠C,此时, AB与AC要么相等,要么不相等.
    假设AB=AC, 那么根据“等边对等角”定理可得∠B=∠C, 但已知条件是 ∠B≠∠C,“∠B=∠C”与“∠B≠∠C”相矛盾,因此AB≠AC.
    你能理解他的推理过程吗?
    在证明时,先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这种证明方法称为反证法.
    用反证法证题的一般步骤
    1. 假设: 先假设命题的结论不成立;2. 归谬: 从这个假设出发,应用正确的推论方法,得出与 定义,公理、已证定理或已知条件相矛盾的结果;3. 结论: 由矛盾的结果判定假设不正确,从而肯定命题 的结论正确.
    例: 用反证法证明:一个三角形中不能有两个角是直角.已知:△ABC.求证: ∠A、∠B、∠C中不能有两个角是直角.
    证明:假设∠A,∠B,∠C中有两个角是直角,不妨设∠A和∠B是 直角,即 ∠A= 90°,∠B = 90°.于是 ∠A+∠B+∠C = 90°+ 90°+ ∠C > 180°.这与三角形内角和定理相矛盾,因此“∠A和∠B是 直角”的假设不成立. 所以,一个三角形中不能有两个角是直角.
    适宜用反证法证明的命题:反证法主要用于直接证明比较困难的命题,例如下面几种常见类型的命题就适宜用反证法:(1)结论以否定形式出现的命题,如钝角三角形中不能有两个钝角;(2)唯一性命题,如两条直线相交只有一个交点;(3)命题的结论以“至多”“至少”等形式叙述的命题,如一个凸多边形中至多有3个锐角.
    1.把下列命题用反证法证明时的第一步写出来.(1)三角形中必有一个内角不小于60度;(2)一个三角形中不能有两个角是钝角;(3)同一平面内,垂直于同一条直线的两条直线平行.
    假设三角形中三个内角都小于60度
    假设一个三角形中有两个角是钝角
    假设在同一平面内,垂直于同一条直线的两条直线不平行
    2.已知△ABC三个内角的对边分别为a,b,c,则下列条件中,△ABC不是等腰三角形的是(  )A. a=3,b=3,c=4B. a∶b∶c=4∶5∶6C. ∠B=50°,∠C=80°D. ∠A∶∠B∶∠C=1∶1∶2
    3.已知△ABC中,AB=AC,求证:∠B<90°.下面写出运用反证法证明这个命题的四个步骤:①所以∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾;②因此假设不成立,所以∠B<90°;③假设在△ABC中,∠B≥90°;④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是      .(填序号) 
    4.在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(   )A.5 B.6 C.7 D.8
    6. 如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,则图中等腰三角形的个数是    .
    5. 在△ABC中,∠A=50°,若∠B=     ,则△ABC是等腰三角形.
    7. 如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE相交于点G.求证:GE=GF.
    证明:如图.∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∵AB=DC,∠B=∠C,BF=CE,∴△ABF≌△DCE,∴∠1=∠2,∴GE=GF.
    证明:∵ DE∥BC , ∴∠DBC=∠EDB .又∵BD是∠ABC的平分线 ,∴∠ ABD= ∠CBD. ∴∠EDB = ∠ABD . ∴ BE=ED(等角对等边),∴ △EBD是等腰三角形.
    8.如图,在△ABC 中,∠ABC的平分线交 AC于点 D,DE∥BC.求证:△EBD是等腰三角形.
    9. 用反证法证明:等腰三角形的两底角必为锐角.证明:①假设等腰三角形ABC的底角∠B,∠C都是直角,则        , 从而       >180°, 这与          矛盾. ②假设等腰三角形ABC的底角∠B,∠C都是钝角,则      ,从而         , 这与         矛盾. 综上所述,假设①②     ,所以∠B,∠C只能为   . 故等腰三角形的两底角必为锐角.
    三角形内角和为180°
    ∠A+∠B+∠C>180°
    有两个角相等的三角形是等腰三角形
    先假设结论不成立,然后推导与已知定理相矛盾的结果,从而证明原命题成立.
    相关课件

    北师大版八年级下册1 等腰三角形教学ppt课件: 这是一份北师大版八年级下册<a href="/sx/tb_c94875_t3/?tag_id=26" target="_blank">1 等腰三角形教学ppt课件</a>,共27页。PPT课件主要包含了复习导入,探索新知,归纳总结,典例精练,知识深化,课堂练习,课堂小结,布置作业,谢谢聆听等内容,欢迎下载使用。

    初中数学北师大版八年级下册1 等腰三角形评课课件ppt: 这是一份初中数学北师大版八年级下册<a href="/sx/tb_c94875_t3/?tag_id=26" target="_blank">1 等腰三角形评课课件ppt</a>,共27页。PPT课件主要包含了学习目标,情境导入,文字语言,符号语言,①②③中知一得二,探究新知,等腰三角形的判定,归纳总结,反证法,小明是这样想的等内容,欢迎下载使用。

    数学八年级下册1 等腰三角形教学课件ppt: 这是一份数学八年级下册<a href="/sx/tb_c94875_t3/?tag_id=26" target="_blank">1 等腰三角形教学课件ppt</a>,共26页。PPT课件主要包含了复习导入,探索新知,归纳总结,典例精练,知识深化,课堂练习,课堂小结,布置作业等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map