|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届安徽省合肥市庐阳区45中学数学九上开学达标检测试题【含答案】
    立即下载
    加入资料篮
    2025届安徽省合肥市庐阳区45中学数学九上开学达标检测试题【含答案】01
    2025届安徽省合肥市庐阳区45中学数学九上开学达标检测试题【含答案】02
    2025届安徽省合肥市庐阳区45中学数学九上开学达标检测试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届安徽省合肥市庐阳区45中学数学九上开学达标检测试题【含答案】

    展开
    这是一份2025届安徽省合肥市庐阳区45中学数学九上开学达标检测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是( )
    A.b2﹣c2=a2B.a:b:c=3:4:5
    C.∠A:∠B:∠C=9:12:15D.∠C=∠A﹣∠B
    2、(4分)已知两个直角三角形全等,其中一个直角三角形的面积为4,斜边为3,则另一个直角三角形斜边上的高为( )
    A.B.C.D.5
    3、(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为( )
    A.(-,1) B.(-1,) C.(,1) D.(-,-1)
    4、(4分)如果ab>0,a+b<0,那么下面各式:① ; ②=1;③=-b.其中正确的是( )
    A.①②B.①③C.①②③D.②③
    5、(4分)下列各表达式不是表示与x的函数的是( )
    A.B.C.D.
    6、(4分)如图,矩形ABCD中,AC与BD交于点O,若,,则对角线AC的长为( )
    A.5B.7.5C.10D.15
    7、(4分)如图l1:y=x+3与l2:y=ax+b相交于点P(m,4),则关于x的不等式x+3≤ax+b的解为( )
    A.x≥4B.x<mC.x≥mD.x≤1
    8、(4分)根据图1所示的程序,得到了如图y与x的函数图像,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图像于点P、Q,连接OP、OQ.则以下结论:①x<0 时,y=;②△OPQ的面积为定值;③x>0时,y随x的增大而增大;④MQ=2PM⑤∠POQ可以等于90°.其中正确结论序号是( )
    A.①②③B.②③④C.③④⑤D.②④⑤
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接 EF.若EF=3,则CD的长为_____________.
    10、(4分)如图,在边长为6的正方形ABCD中,点F为CD上一点,E是AD的中点,且DF=1.在BC上找点G,使EG=AF,则BG的长是___________
    11、(4分)一个正多边形的每个内角等于108°,则它的边数是_________.
    12、(4分)如图,在平行四边形 ABCD 中, AD  2 AB ;CF 平分 BCD 交 AD 于 F ,作 CE  AB , 垂足 E 在边 AB 上,连接 EF .则下列结论:① F 是 AD 的中点; ② S△EBC  2S△CEF;③ EF  CF ; ④ DFE  3AEF .其中一定成立的是_____.(把所有正确结论的序号都填在横线上)
    13、(4分)如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)为进一步推进青少年毒品预防教育“6•27“工程,切实提高广大青少年识毒、防毒、拒毒的意识和能力,我市高度重视全国青少年禁毒知识竞赛活动.针对某校七年级学生的知识竞赛成绩绘制了如图不完整的统计图表.
    知识竞赛成绩频数分布表
    根据所给信息,解答下列问题.
    (1)a=____,b=____.
    (2)请求出C组所在扇形统计图中的圆心角的度数.
    (3)补全知识竞赛成绩频数分布直方图.
    (4)已知我市七年级有180000名学生,请估算全市七年级知识竞赛成绩低于80分的人数.
    15、(8分)如图,△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC
    于点E、F、G,连接DE、DG.
    (1)求证:四边形DGCE是菱形;
    (2)若∠ACB=30°,∠B=45°,CG=10,求BG的长.
    16、(8分)如图1,在直角坐标系中放入一个边长AB长为3,BC长为5的矩形纸片ABCD,使得BC、AB所在直线分别与x、y轴重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.
    (1)求折痕AE所在直线与x轴交点的坐标;
    (2)如图2,过D作DG⊥AF,求DG的长度;
    (3)将矩形ABCD水平向右移动n个单位,则点B坐标为(n,1),其中n>1.如图3所示,连接OA,若△OAF是等腰三角形,试求点B的坐标.
    17、(10分)如图,在直角坐标系中,,,是线段上靠近点的三等分点.
    (1)若点是轴上的一动点,连接、,当的值最小时,求出点的坐标及的最小值;
    (2)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.
    18、(10分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知x、y为直角三角形两边的长,满足,则第三边的长为________.
    20、(4分)平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,点E在AB上且AE:EB=1:2,点F是BC中点,过D作DP⊥AF于点P,DQ⊥CE于点Q,则DP:DQ=_______.
    21、(4分)如图,在平行四边形中,,,,则______.
    22、(4分)如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__
    23、(4分)如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.

    二、解答题(本大题共3个小题,共30分)
    24、(8分)因式分解:.
    25、(10分)在▱ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F
    (1)如图①,求证:OE=OF;
    (2)如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.
    26、(12分)解方程:
    (1)x2-4x=3
    (2)x2-4=2(x+2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D是否是直角三角形.
    【详解】
    A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;
    B、∵32+42=52,∴△ABC为直角三角形;
    C、∵∠A:∠B:∠C=9:12:15,,故不能判定△ABC是直角三角形;
    D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;
    故选C.
    考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
    2、C
    【解析】
    先求出这个三角形斜边上的高,再根据全等三角形对应边上的高相等解答即可.
    【详解】
    解:设面积为4的直角三角形斜边上的高为h,则×3h=4,
    ∴h=,
    ∵两个直角三角形全等,
    ∴另一个直角三角形斜边上的高也为.
    故选:C.
    本题主要考查全等三角形对应边上的高相等的性质和三角形的面积公式,较为简单.
    3、A
    【解析】
    试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为
    (-,1)故选A.
    考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.
    4、D
    【解析】
    先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.
    【详解】
    ∵ab>0,a+b<0,
    ∴a<0,b<0,
    ∴无意义,故①不正确;
    ,故②正确
    ,故③正确.
    故选D.
    本题考查了二次根式的性质,熟练掌握性质是解答本题的关键. ,, (a≥0,b>0).
    5、C
    【解析】
    根据函数的概念进行判断。满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案.
    【详解】
    解:A、y=3x2对于x的每一个取值,y都有唯一确定的值,所以y是x的函数,不符合题意;
    B、对于x的每一个取值,y都有唯一确定的值是,所以y是x的函数,不符合题意;
    C、对于x的每一个取值,y都有两个值,所以y不是x的函数,符合题意;
    D、y=3x+1对于x的每一个取值,y都有唯一确定的值,所以y是x的函数,不符合题意.
    故选:C.
    主要考查了函数的概念.函数的概念:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    6、C
    【解析】
    分析:根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=5,易求AC的长.
    详解:∵四边形ABCD是矩形,∴AC=BD.
    ∵AO=AC,BO=BD,∴AO=BO.
    又∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2AO=1.
    故选C.
    点睛:本题考查的是矩形的性质以及等边三角形的判定和性质,熟记矩形的各种性质是解题的关键.
    7、D
    【解析】
    试题分析:首先把P(m,4)代入y=x+3可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.
    解:把P(m,4)代入y=x+3得:m=1,
    则P(1,4),
    根据图象可得不等式x+3≤ax+b的解集是x≤1,
    故选D.
    8、D
    【解析】
    根据题意得到当x<0时,y=- ,当x>0时,y=,设P(a,b),Q(c,d),求出ab=-2,cd=4,求出△OPQ的面积是3;x>0时,y随x的增大而减小;由ab=-2,cd=4得到MQ=2PM;因为∠POQ=90°也行,根据结论即可判断答案.
    【详解】
    解:①x<0,y=-,∴①错误;
    ②当x<0时,y=-,当x>0时,y=,
    设P(a,b),Q(c,d),
    则ab=-2,cd=4,
    ∴△OPQ的面积是(-a)b+cd=3,∴②正确;
    ③x>0时,y随x的增大而减小,∴③错误;
    ④∵ab=-2,cd=4,即MQ=2PM,∴④正确;
    ⑤设PM=a,则OM=-.则PO2=PM2+OM2=a2+(-)2=a2+,
    QO2=MQ2+OM2=(2a)2+(-)2=4a2+,
    PQ2=PO2+QO2=a2++4a2+=(3a)2=9a2,
    整理得a4=2,
    ∵a有解,∴∠POQ=90°可能存在,故⑤正确;
    正确的有②④⑤,
    故选D.
    本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能根据这些性质进行说理是解此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    试题分析:在□ABCD中,BD为对角线,E、F分别是AD,BD的中点,所以EF是△DAB的中位线,因为EF=3,所以AB=1,所以DC=1.
    考点:中位线和平行四边形的性质
    点评:该题较为简单,主要考查学生对三角形中位线的性质和平行四边形性质的掌握程度.
    10、1或2
    【解析】
    过E作EH⊥BC于H,取,根据平行线分线段成比例定理得:BH=CH=3,证明Rt△ADF≌Rt△EHG,得GH=DF=1,可得BG的长,再运用等腰三角形的性质可得BG及 的长.
    【详解】
    解:如图:过E作EH⊥BC于H,取 ,则AB∥EH∥CD,
    ∵E是AD的中点,
    ∴BH=CH=3,
    ∵四边形ABCD是正方形,
    ∴AD=CD=EH,∠D=∠EHG=90°,
    ∵EG=AF,
    ∴Rt△ADF≌Rt△EHG(HL),
    ∴GH=DF=1,
    ∴BG=BH−GH=3−1=1;



    故答案为:1或2.
    本题主要考查了全等三角形的判定与性质,正方形的性质,掌握全等三角形的判定与性质,正方形的性质是解题的关键.
    11、1
    【解析】
    由题意可得这个正多边形的每个外角等于72°,然后根据多边形的外角和是360°解答即可.
    【详解】
    解:∵一个正多边形的每个内角等于108°,∴这个正多边形的每个外角等于72°,
    ∴这个正多边形的边数为.
    故答案为:1.
    本题考查了正多边形的基本知识,属于基础题型,熟知正多边形的每个外角相等、多边形的外角和是360°是解此题的关键.
    12、①③④.
    【解析】
    由角平分线的定义和平行四边形的性质可证得CD=DF,进一步可证得F为AD的中点,由此可判断①;延长EF,交CD延长线于M,分别利用平行四边形的性质以及①的结论可得△AEF≌△DMF,结合直角三角形的性质可判断③;结合EF=FM,利用三角形的面积公式可判断②;在△DCF和△ECF中利用等腰三角形的性质、外角的性质及三角形内角和可得出∠DFE=3∠AEF,可判断④,综上可得答案.
    【详解】
    解:∵四边形ABCD为平行四边形,∴AD∥BC,
    ∴∠DFC=∠BCF,
    ∵CF平分∠BCD,∴∠BCF=∠DCF,
    ∴∠DFC=∠DCF,∴CD=DF,
    ∵AD=2AB, ∴AD=2CD,
    ∴AF=FD=CD,即F为AD的中点,故①正确;
    延长EF,交CD延长线于M,如图,

    ∵四边形ABCD是平行四边形, ∴AB∥CD,
    ∴∠A=∠MDF,
    ∵F为AD中点,∴AF=FD,
    又∵∠AFE=∠DFM,
    ∴△AEF≌△DMF(ASA),
    ∴FE=MF,∠AEF=∠M,
    ∵CE⊥AB,∴∠AEC=90°,
    ∴∠ECD=∠AEC=90°,
    ∵FM=EF,∴FC=FM,故③正确;
    ∵FM=EF,∴,
    ∵MC>BE,
    ∴<2,故②不正确;
    设∠FEC=x,则∠FCE=x,
    ∴∠DCF=∠DFC=90°-x,
    ∴∠EFC=180°-2x,
    ∴∠EFD=90°-x+180°-2x=270°-3x ,
    ∵∠AEF=90°-x,
    ∴∠DFE=3∠AEF,故④正确;
    综上可知正确的结论为①③④.
    故答案为①③④.
    本题以平行四边形为载体,综合考查了平行四边形的性质、全等三角形的判定和性质、直角三角形的斜边上的中线等于斜边一半的性质、三角形的内角和和等腰三角形的判定和性质,思维量大,综合性强. 解题的关键是正确作出辅助线,综合运用所学知识去分析思考;本题中见中点,延长证全等的思路是添辅助线的常用方法,值得借鉴与学习.
    13、1cm
    【解析】
    根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD=5(cm),
    ∵DE⊥AB,DE=3(cm),
    在Rt△ADE中,AE==4,
    ∴BE=AB−AE=5−4=1(cm),
    故答案为1cm.
    本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)300,50;(2)54°;(3)见解析;(4)9000人.
    【解析】
    (1)用D的人数除以D所占的百分比求出参加的总人数,然后根据B的比例求出a的值,继而求出b的值即可;
    (2)用C组的比例乘以360度即可得;
    (3)根据(1)的结果即可补全频数分布直方图;
    (4)用E组的比例乘以180000进行估算即可.
    【详解】
    (1)∵被调查的总人数为200÷20%=1000(人),
    ∴a=1000×=300,b=1000﹣(300+300+150+200)=50,
    故答案为300,50;
    (2)C组所在扇形统计图中的圆心角的度数为360°×=54°;
    (3)补全统计图如下:

    (4)全市九年级知识竞赛成绩低于8(0分)人数约为180000×=9000人.
    本题考查了频数分布直方图,扇形统计图,用样本估计总体等,读懂统计图,从中获取有用的信息是解题的关键.
    15、 (1)证明见解析;(2)BG= 5+5.
    【解析】
    (1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;
    (2)过点D作DH⊥BC,由锐角三角函数可求DH的长,GH的长,BH的长,即可求BG的长.
    【详解】
    (1)∵CD平分∠ACB,
    ∴∠ACD=∠DCG
    ∵EG垂直平分CD,
    ∴DG=CC,DE=EC
    ∴∠DCG=∠GDC,∠ACD=∠EDC
    ∴∠EDC=∠DCG=∠ACD=∠GDC
    ∴CE∥DG,DE∥GC
    ∴四边形DECG是平行四边形
    又∵DE=EC
    ∴四边形DGCE是菱形
    (2)如图,过点D作DH⊥BC,
    ∵四边形DGCE是菱形,
    ∴DE=DG=GC=10,DG∥EC
    ∴∠ACB=∠DGB=30°,且DH⊥BC
    ∴DH=5,HG=DH=5
    ∵∠B=45°,DH⊥BC
    ∴∠B=∠BDH=45°
    ∴BH=DH=5
    ∴BG=BH+HG=5+5
    本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.
    16、(2)折痕AE所在直线与x轴交点的坐标为(9,2);(2)3;(3)点B(4,2)或B(2,2).
    【解析】
    (2)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=5,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x轴交点的坐标;
    (2)判断出△DAG≌△AFB,即可得出结论;
    (3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.
    【详解】
    解:(2)∵四边形ABCD是矩形,
    ∴AD=CB=5,AB=DC=3,∠D=∠DCB=∠ABC=92°,
    由折叠对称性:AF=AD=5,EF=DE,
    在Rt△ABF中,BF==4,
    ∴CF=2,
    设EC=x,则EF=3﹣x,
    在Rt△ECF中,22+x2=(3﹣x)2,
    解得:x=,
    ∴E点坐标为:(5,),
    ∴设AE所在直线解析式为:y=ax+b,
    则,
    解得:,
    ∴AE所在直线解析式为:y=x+3,
    当y=2时,x=9,
    故折痕AE所在直线与x轴交点的坐标为:(9,2);
    (2)在△DAG和△AFB中
    ∵,
    ∴△DAG≌△AFB,
    ∴DG=AB=3;
    (3)分三种情况讨论:
    若AO=AF,
    ∵AB⊥OF,
    ∴BO=BF=4,
    ∴n=4,
    ∴B(4,2),
    若OF=FA,则n+4=5,
    解得:n=2,
    ∴B(2,2),
    若AO=OF,
    在Rt△AOB中,AO2=OB2+AB2=m2+9,
    ∴(n+4)2=n2+9,
    解得:n=(n<2不合题意舍去),
    综上所述,若△OAF是等腰三角形,n的值为n=4或2.
    即点B(4,2)或B(2,2).
    此题是四边形综合题,主要考查了待定系数法,折叠的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,利用勾股定理求出CE是解本题的关键.
    17、(1),;(2)α的值为45°,90°,135°,180°.
    【解析】
    (1)作HG⊥OB于H.由HG∥AO,求出OG,HG,即可得到点H的坐标,作点B关于y轴的对称点B′,连接B′H交y轴于点M,则B'(-2,0),此时MB+MH的值最小,最小值等于B'H的长;求得直线B′H的解析式为y= ,即可得到点M的坐标为.
    (2)依据△OST为等腰三角形,分4种情况画出图形,即可得到旋转角的度数.
    【详解】
    解:(1)如图1,作HG⊥OB于H.
    ∵HG∥AO,

    ∵OB=2,OA= ,
    ∴GB= ,HG= ,
    ∴OG=OB-GB= ,
    ∴H(,)
    作点B关于y轴的对称点B′,连接B′H交y轴于点M,则B'(-2,0),
    此时MB+MH的值最小,最小值等于B'H的长.
    ∵B'(-2,0),H(,)
    B'H=
    ∴MB+MH的最小值为
    设直线B'H的解析式为y=kx+b,则有

    解得:
    ∴直线B′H的解析式为
    当x=0时,y=
    ∴点M的坐标为:
    (2)如图,当OT=OS时,α=75°-30°=45°;
    如图,当OT=TS时,α=90°;
    如图,当OT=OS时,α=90°+60°-15°=135°;
    如图,当ST=OS时,α=180°;
    综上所述,α的值为45°,90°,135°,180°.
    本题考查几何变换综合题、平行线分线段成比例定理、轴对称最短问题、勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.
    18、小路的宽为2米.
    【解析】
    根据“小路与观赏亭的面积之和占草坪面积的”,建立方程求解即可得出结论.
    【详解】
    设小路的宽为x米,
    由题意得,(5x)2+(40+50)x﹣2×x×5x=×40×50
    解得,x=2或x=﹣8(不合题意,舍去)
    答:小路的宽为2米.
    考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、、或.
    【解析】
    试题分析:∵|x2-4|≥0,,
    ∴x2-4=0,y2-5y+6=0,
    ∴x=2或-2(舍去),y=2或3,
    ①当两直角边是2时,三角形是直角三角形,则斜边的长为:;
    ②当2,3均为直角边时,斜边为;
    ③当2为一直角边,3为斜边时,则第三边是直角,长是.
    考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理.
    20、2:
    【解析】
    【分析】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=S平行四边形ABCD,求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=a,BM=a,FN=a,CM=a,求出AF=a,CE=2a,代入求出即可.
    【详解】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,
    ∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S平行四边形ABCD,
    即AF×DP=CE×DQ,
    ∴AF×DP=CE×DQ,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∵∠DAB=60°,
    ∴∠CBN=∠DAB=60°,
    ∴∠BFN=∠MCB=30°,
    ∵AB:BC=3:2,
    ∴设AB=3a,BC=2a,
    ∵AE:EB=1:2,F是BC的中点,
    ∴BF=a,BE=2a,
    BN=a,BM=a,
    由勾股定理得:FN=a,CM=a,
    AF==a,
    CE==2a,
    ∴a•DP=2a•DQ,
    ∴DP:DQ=2:,
    故答案为:2:.
    【点睛】本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,求出AF×DP=CE×DQ和AF、CE的值是解题的关键.
    21、
    【解析】
    根据平行四边形的性质可得AB=10,BC=AD=6,由BC⊥AC,根据勾股定理求得AC的长,即可求得OA长,再由勾股定理求得OB的长,即可求得BD的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BC=AD=6,OB=OD,OA=OC,
    ∵AC⊥BC,
    ∴AC==8,
    ∴OC=4,
    ∴OB==2,
    ∴BD=2OB=4
    故答案为:4.
    本题考查了平行四边形的性质以及勾股定理,熟练运用平行四边形的性质及勾股定理是解决本题的关键.
    22、
    【解析】
    求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.
    【详解】
    如图,
    在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:
    ∴菱形形变前的面积与形变后的面积之比:
    ∵这个菱形的“形变度”为2:,
    ∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,

    ∵若这个菱形的“形变度”k=,


    ∴S△A′E′F′=.
    故答案为:.
    考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.
    23、x<2.
    【解析】
    根据不等式与函数的关系由图像直接得出即可.
    【详解】
    由图可得关于的不等式的解集为x<2.
    故填:x<2.
    此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    先提公因式xy,然后再采用公式法进行因式分解.
    【详解】
    解:原式=.
    故答案为:
    本题考查因式分解,因式分解的一般步骤为:先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适;熟练的记牢公式是解决此类题的关键.
    25、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)由四边形ABCD是平行四边形,得到OB=OD,AB∥CD,根据全等三角形的性质即可得到结论;
    (2)根据对角线互相平分的四边形是平行四边形先判定四边形BEDF是平行四边形,继而根据对角线互相垂直的平行四边形是菱形即可得结论.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴OB=OD,AB∥CD,
    ∴∠EBO=∠FDO,
    在△OBE与△ODF中,,
    ∴△OBE≌△ODF(ASA),
    ∴OE=OF;
    (2)∵OB=OD,OE=OF,
    ∴四边形BEDF是平行四边形,
    ∵EF⊥BD,
    ∴平行四边形BEDF是菱形.
    本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.
    26、(1)x1=, x2= (2)x1=-2,x2=4
    【解析】
    (1)观察方程的特点:二次项系数为1,一次项系数为4,因此利用配方法解方程;
    (2)观察方程的左边可以利用平方差公式分解因式,此时方程两边都含有公因式(x+2),因此利用因式分解法解方程.
    【详解】
    (1)解:配方得,
    x2-4x+4=3+4
    (x-2)2=7
    解之:x-2=±
    ∴x1=, x2=;
    (2)解:(x+2)(x-2)-2(x+2)=0
    (x+2)(x-2-2)=0
    ∴x+2=0或x-4=0
    解之:x1=-2,x2=4.
    本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
    题号





    总分
    得分
    批阅人
    组别
    成绩(分数)
    人数
    A
    95≤x<100
    300
    B
    90≤x<95
    a
    C
    85≤x<90
    150
    D
    80≤x<85
    200
    E
    75≤x<80
    b
    相关试卷

    2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年安徽省合肥市庐阳区数学九上开学监测试题【含答案】: 这是一份2024年安徽省合肥市庐阳区数学九上开学监测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年安徽省合肥市庐阳区九上数学开学监测试题【含答案】: 这是一份2024年安徽省合肥市庐阳区九上数学开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map