2025届安徽省淮北市濉溪县数学九年级第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是( )
A.B.
C.D.
2、(4分)在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是( )
A.a=9 b=41 c=40B.a=b=5 c=5
C.a:b:c=3:4:5D.a=11 b=12 c=15
3、(4分)若一次函数的函数值随的增大而增大,则( )
A.B.C.D.
4、(4分)不等式组的解集在数轴上表示为( )
A.B.
C.D.
5、(4分)中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为( )
A.0.7×10-8B.7×10-8C.7×10-9D.7×10-10
6、(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.甲B.乙C.丙D.丁
7、(4分)已知直线y1=2x与直线y2=﹣2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④直线y1=2x与直线y2=2x﹣4在平面直角坐标系中的位置关系是平行.其中正确的是( )
A.①③④B.②③C.①②③④D.①②③
8、(4分)直角三角形的三边为a、b、c,其中a、b两边满足,那么这个三角形的第三边c的取值范围为( )
A.c>6B.6<c<8C.2<c<14D.c<8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直角三角形的两条边为5和12,则第三条边长为__________.
10、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.
11、(4分)某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.
12、(4分)直线y=x﹣与y轴的交点是_____.
13、(4分)若方程的解是正数,则m的取值范围_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.
15、(8分)已知一次函数,当时,,求它的解析式以及该直线与坐标轴的交点坐标.
16、(8分)如图,直线分别与轴、轴交于点、点,与直线交于点.
(1)若,请直接写出的取值范围;
(2)点在直线上,且的面积为3,求点的坐标?
17、(10分)解方程
①2x(x-1)=x-1; ②(y+1)(y+2)=2
18、(10分)(1);
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.
20、(4分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
21、(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
22、(4分)约分:_______.
23、(4分)如图是某超市一层到二层电梯的示意图,其中AB、CD分别表示超市一层、二层电梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘电梯从点B到点C上升的高度h约为________米.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:,其中- 1.
25、(10分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.
(1)求一次函数的解析式;
(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;
(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.
26、(12分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?
(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.
方法2:如图②,取四边形四边的中点,,,,连接,,,,
(2)求证:四边形是平行四边形;
(3)请直接写出S四边形ABCD与之间的关系:_____________.
方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;
(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.
(5)求证:四边形是平行四边形.
(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)
(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD= .
(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系为先快后慢.
【详解】
根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,每一段h随t的增大而增大,增大的速度是先快后慢.
故选C.
此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.
2、D
【解析】
根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.
【详解】
解:A、因为92+402=412,故能构成直角三角形;
B、因为52+52=(5)2,故能构成直角三角形;
C、因为32+42=52,故能构成直角三角形;
D、因为112+122≠152,故不能构成直角三角形;
故选:D.
本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.
3、B
【解析】
【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.
【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,
∴k-2>0,
∴k>2,
故选B.
【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
4、C
【解析】
先分别解不等式,得到不等式组的解集,再在数轴上表示解集.
【详解】
因为,不等式组的解集是:x≤-1,
所以,不等式组的解集在数轴上表示为
故选C
本题考核知识点:解不等式组.解题关键点:解不等式.
5、C
【解析】
绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.
【详解】
0.000000007=7×10-9,
故选:C.
题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.
6、D
【解析】
【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】∵,
∴从乙和丁中选择一人参加比赛,
∵,
∴选择丁参赛,
故选D.
【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
7、C
【解析】
∵将A(1,2)代入y1和y2中可得左边=右边,
∴①是正确的;
∵当x=1时,y1=2,y2=2,故两个函数值相等,
∴②是正确的;
∵x<1,
∴2x<2,-2x+4>2,
∴y1<y2,
∴③是正确的;
∵直线y2=2x-4可由直线y1=2x向下平移4个单位长度可得,
∴直线y1=2x与直线y2=2x-4的位置关系是平行,
∴④是正确的;
故选C.
8、C
【解析】
根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.
【详解】
由题意得,a−12a+36=0,b−8=0,
解得a=6,b=8,
∵8−6=2,8+6=14,
∴2
此题考查三角形三边关系,解题关键在于据非负数的性质列式求出a、b
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或
【解析】
因为不确定哪一条边是斜边,故需要讨论:①当12为斜边时,②当12是直角边时,根据勾股定理,已知直角三角形的两条边就可以求出第三边.
【详解】
解:①当12为斜边时,则第三边==;
②当12是直角边时,第三边==1.
故答案为:1或.
本题考查了勾股定理的知识,难度一般,但本题容易漏解,在不确定斜边的时候,一定不要忘记讨论哪条边是斜边.
10、二
【解析】
根据各象限内点的坐标特征,可得答案.
【详解】
解:由点A(x,y)在第三象限,得
x<0,y<0,
∴x<0,-y>0,
点B(x,-y)在第二象限,
故答案为:二.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
11、
【解析】
试题解析:0.00 000 002=2×10-8.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
12、 (0,﹣)
【解析】
根据在y轴上点的坐标特征,可知要求直线y=x﹣与y轴的交点坐标就是令x=0
【详解】
∵当x=0时,y=×0﹣=﹣,
∴与y轴的交点坐标是(0,﹣),
故答案为:(0,﹣).
本题考查了一次函数与y轴的交点坐标的求法,正确理解知识是解题的关键.
13、m>-2且m≠0
【解析】
分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.
解析:解方程 解为正数,∴ 且m≠0.
故答案为m>-2且m≠0
三、解答题(本大题共5个小题,共48分)
14、1
【解析】
依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=1.
【详解】
∵AB=13,AC=20,AD=12,AD⊥BC,
∴Rt△ABD中,BD===5,
Rt△ACD中,CD===16,
∴BC=BD+CD=5+16=1.
本题主要考查勾股定理,解题的关键是熟练掌握勾股定理公式a2+b2=c2及其变形.
15、该直线与x轴交点的坐标是(1,0),与y轴的交点坐标是(0,-1).
【解析】
把x、y的值代入y=kx-1,通过解方程求出k的值得到一次函数的解析式,根据直线与x轴相交时,函数的y值为0,与y轴相交时,函数的x值为0求出该直线与坐标轴的交点坐标.
【详解】
解:∵一次函数y=kx-1,当x=2时,y=-2,
∴-2=2k-1,解得k=1,
∴一次函数的解析式为y=x-1.
∵当y=0时,x=1;
当x=0时,y=-1,
∴该直线与x轴交点的坐标是(1,0),与y轴的交点坐标是(0,-1).
本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.正确求出直线的解析式是解题的关键.
16、 (1)x>2;(2)(0,3)或(4,1).
【解析】
(1)依据直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),即可得到当y1<y2时,x>2;
(2)分两种情况讨论,依据△OPC的面积为3,即可得到点P的坐标.
【详解】
解:(1)∵直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),
∴当y1<y2时,x>2;
(2)将(2,2)代入y1=x+b,得b=3,
∴y1=x+3,
∴A(6,0),B(0,3),
设P(x,x+3),
则当x<2时,由×3×2×3×x=3,
解得x=0,
∴P(0,3);
当x>2时,由×6×2﹣×6×(x+3)=3,
解得x=4,
∴x+3=1,
∴P(4,1),
综上所述,点P的坐标为(0,3)或(4,1).
故答案为(1)x>2;(2)(0,3)或(4,1).
本题主要考查了一次函数图象上点的坐标特征以及一次函数的性质,设P(x,x+3),利用三角形的面积的和差关系列方程是解题的关键.
17、 (1)x1=1,x2=; (2) y1=0,y2=-3
【解析】
【分析】()用因式分解法求解;(2)先去括号整理,再用因式分解法求解.
【详解】
解:①2x(x-1)=x-1
(2x-1)(x-1)=0
所以,2x-1=0或x-1=0
所以,x1=1, x2=;
②(y+1)(y+2)=2
y2+3y=0
y(y+3)=0
所以,y=0或y+3=0
所以,y1=0,y2=-3
【点睛】本题考核知识点:解一元二次方程.解题关键点:用因式分解法解方程.
18、(1);(2)-5.
【解析】
(1)首先根据立方根、零次幂、负指数幂和绝对值的性质化简,然后计算即可;
(2)将二次根式化简,然后应用乘法分配律,进行计算即可.
【详解】
解:(1)原式;
(2)原式.
此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.
【详解】
∵多边形的一个顶点出发的对角线共有(n-3)条,
∴n-3=3,
∴n=6,
∴内角和=(6-2)×180°=1°,
故答案是:1.
本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.
20、22.5
【解析】
∵ABCD是正方形,
∴∠DBC=∠BCA=45°,
∵BP=BC,
∴∠BCP=∠BPC=(180°-45°)=67.5°,
∴∠ACP度数是67.5°-45°=22.5°
21、1.2
【解析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,
∴AM的最小值是1.2.
本题考查了勾股定理, 矩形的性质,熟练的运用勾股定理和矩形的性质是解题的关键.
22、
【解析】
根据分式的基本性质,分子分母同时除以公因式3ab即可。
【详解】
解:分子分母同时除以公因式3ab,得:
故答案为:
本题考查了分式的基本性质的应用,分式的约分找到分子分母的公因式是关键,是基础题。
23、1
【解析】
过点C作CE⊥AB,交AB的延长线于E,
∵∠ABC=150°,
∴∠CBE=30°,
在Rt△BCE中,∵BC=12,∠CBE=30°,
∴CE=BC=1.
故答案是1.
点睛:本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
试题分析:先根据分式混合运算的法则把原式进行化简,然后代入计算即可.
试题解析:解:原式==
当x=时,原式==.
25、(1)y=-x+3;(2)不在,理由见解析;(3)3
【解析】
(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;
(2)把C的坐标代入一次函数的解析式进行检验即可;
(3)首先求得D的坐标,然后利用三角形的面积公式求解.
解:(1)在y=2x中,令x=1,得y=2,则点B的坐标是(1,2),
设一次函数的解析式是y=kx+b(k≠0),
则 ,解得
故一次函数的解析式是y=-x+3.
(2)点C(4,-2)不在该一次函数的图象上.
理由:对于y=-x+3,当x=4时,y=-1≠-2,
所以点C(4,-2)不在该函数的图象上.
(3)在y=-x+3中,令y=0,得x=3,则点D的坐标是(3,0),
则S△BOD=×OD×2=×3×2=3.
点睛:本题主要考查了用待定系数法求函数的解析式,解题的重点在于要先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.
26、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD ;(4)AEO,OEB;(5)见详解;(6);(7)
【解析】
(1)先证四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,可得S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
即可得出结论;
(2)证明,和,,即可得出结论;
(1)由,可得S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,即可得出结论;
(4)有旋转的定义即可得出结论;
(5)先证,得到,再证,即可得出结论;
(6)应用方法1,过点H作HM⊥EF与点M,再计算即可得出答案;
(7)应用方法1,过点O作OM⊥IK与点M, 再计算即可得出答案.
【详解】
解:方法一:如图,
∵EF∥AC∥HD,EH∥DB∥FG,
∴四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,
∴S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
∴.
故答案为.
方法二:如图,连接.
(1),分别为,中点
..
,分别为,中点
.
,
四边形为平行四边形
(2),分别为,中点
..
∴S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,
∴
故答案为.
方法1.(1)有旋转可知;.
故答案为∠AEO;∠OEB.
(2)证明:有旋转知.
.
旋转.
四边形为平行四边形
应用1:如图,应用方法1,过点H作HM⊥EF与点M,
∵,
∴∠AEM=60°, ∠EHM=10°,
∵,,
∴EM=1,EH=6,EF=8,
∴HM==,
∴=EF·HM=24
∴=,
故答案为.
应用2:如图,应用方法1,过点O作OM⊥IK与点M,
,
∵,
∴∠MIO=60°, ∠IOM=10°,
∵,,
∴IM=1,OI=6,IK=8,
∴OM==,
∴=KI·OM=24
∴S四边形ABCD=,
故答案为.
此题主要考查了平行四边形的判定与性质,旋转,三角形的中位线,三角形和平行四边形的面积,选择合适的方法来求面积是解决问题的关键.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数(环)
9.14
9.15
9.14
9.15
方差
6.6
6.8
6.7
6.6
2024年安徽省瑶海区九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年安徽省瑶海区九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省濉溪县九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年安徽省濉溪县九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年安徽省淮北市濉溪县淮海中学九年级中考模拟数学试题: 这是一份2023年安徽省淮北市濉溪县淮海中学九年级中考模拟数学试题,共7页。试卷主要包含了如图,是的直径,若,则的度数为等内容,欢迎下载使用。