


2025届安徽省宿州市名校九上数学开学复习检测模拟试题【含答案】
展开
这是一份2025届安徽省宿州市名校九上数学开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是( )
A.k≠2B.k>2C.0<k<2D.0≤k<2
2、(4分)若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为( )
A.1B.﹣2C.﹣1D.2
3、(4分)下列计算正确的是( )
A.B.C.D.﹣
4、(4分)如图,过点作轴的垂线,交直线于点;点与点关于直线对称;过点作轴的垂线,交直线于点;点与点关于直线对称;过点作轴的垂线,交直线于点;按此规律作下去,则点的坐标为
A.(2n,2n-1)B.(,)C.(2n+1,2n)D.(,)
5、(4分)如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=DF,若BC=8,则DF的长为( )
A.6B.8C.4D.
6、(4分)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
7、(4分)小明3分钟共投篮80次,进了50个球,则小明进球的频率是( ).
A.80 B.50 C.1.6 D.0.625
8、(4分)如图,在平行四边形ABCD中,下列结论一定正确的是( ).
A.AB=ADB.OA=OCC.AC=BDD.∠BAD=∠ABC
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.
10、(4分)不等式组的所有整数解的积是___________.
11、(4分)不等式的负整数解有__________.
12、(4分)如图,一次函数与的图象相交于点,则关于的不等式的解集是________.
13、(4分)有一种细菌的直径约为0.000000054米,将0.000000054这个数用科学记数法表示为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1);
(2).
15、(8分)初三年级学习压力大,放学后在家自学时间较初一、初二长,为了解学生学习时间,该年级随机抽取25%的学生问卷调查,制成统计表和扇形统计图,请你根据图表中提供的信息回答下列问题:
(1)初三年级共有学生_____人.
(2)在表格中的空格处填上相应的数字.
(3)表格中所提供的学生学习时间的中位数是_____,众数是_____.
16、(8分)某校计划购进A,B两种树木共100棵进行校园绿化,已知A种树木每棵100元,B种树木每棵80元,因布局需要,购买A种树木的数量不少于B种树木数量的3倍,实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
17、(10分)根据指令[s,α](s≥0,0°<α<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度α,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.
(1)若给机器人下了一个指令[4,60°],则机器人应移动到点______;
(2)请你给机器人下一个指令_________,使其移动到点(-5,5).
18、(10分)图1,图2是两张形状、大小完全相同的6×6方格纸,方格纸中的每个小长方形的边长为1,所求的图形各顶点也在格点上.
(1)在图1中画一个以点,为顶点的菱形(不是正方形),并求菱形周长;
(2)在图2中画一个以点为所画的平行四边形对角线交点,且面积为6,求此平行四边形周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ▲ 人.
20、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______.
21、(4分)已知一次函数与图象如图所示,则下列结论:①;②;③关于的方程的解为;④当,.其中正确的有_______(填序号).
22、(4分)方程的解是_______.
23、(4分)如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.
(1)求证:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°,求∠B的度数.
25、(10分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,连接CD,交BE于点F.
求证:BE垂直平分CD.
26、(12分)如图,在中,点,分别为边,的中点,延长到点使.
求证:四边形是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.
【详解】
∵一次函数y=(k-2)x+k的图象经过第一、二、四象限,
∴k-2<0且k>0;
∴0<k<2,
故选C.
考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
2、C
【解析】
把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.
【详解】
解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.
故选:C.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
3、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
解:(A)原式=2﹣=,故A错误;
(B)原式=2,故B错误;
(D)原式=﹣,故D错误;
故选C.
本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
4、B
【解析】
先根据题意求出点A2的坐标,再根据点A2的坐标求出B2的坐标,以此类推总结规律便可求出点的坐标.
【详解】
∵
∴
∵过点作轴的垂线,交直线于点
∴
∵
∴
∵过点作轴的垂线,交直线于点
∴
∵点与点关于直线对称
∴
以此类推便可求得点An的坐标为,点Bn的坐标为
故答案为:B.
本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.
5、A
【解析】
根据三角形中位线的性质得出DE的长度,然后根据EF=DF,DE+EF=DF求出DF的长度.
【详解】
解:∵D、E分别为AB和AC的中点,
∴DE=BC=4,
∵EF=DF,DE+EF=DF,
∴DF=6,
∴选A.
本题主要考查的是三角形中位线的性质,属于基础题型.理解中位线的性质是解决这个问题的关键.
6、C
【解析】
解:∵Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,
∴AD =DC,∠EAD=∠C=45°,∠EDA=∠MDN-∠ADN =90°-∠ADN=∠FDC.
∴△EDA≌△FDC(ASA).
∴AE=CF.
∴BE+CF= BE+ AE=AB.
在Rt△ABC中,根据勾股定理,得AB=BC.
∴(BE+CF)=BC.
∴结论①正确.
设AB=AC=a,AE=b,则AF=BE= a-b.
∴.
∴.
∴结论②正确.
如图,过点E作EI⊥AD于点I,过点F作FG⊥AD于点G,过点F作FH⊥BC于点H,ADEF相交于点O.
∵四边形GDHF是矩形,△AEI和△AGF是等腰直角三角形,
∴EO≥EI(EF⊥AD时取等于)=FH=GD,
OF≥GH(EF⊥AD时取等于)=AG.
∴EF=EO+OF≥GD+AG=AD.
∴结论④错误.
∵△EDA≌△FDC,
∴.
∴结论③错误.
又当EF是Rt△ABC中位线时,根据三角形中位线定理知AD与EF互相平分.
∴结论⑤正确.
综上所述,结论①②⑤正确.故选C.
7、D
【解析】
试题分析:频率等于频数除以数据总和,∵小明共投篮81次,进了51个球,∴小明进球的频率=51÷81=1.625,故选D.
考点:频数与频率.
8、B
【解析】
根据平行四边形的性质分析即可.
【详解】
由平行四边形的性质可知:①边:平行四边形的对边相等 ②角:平行四边形的对角相等③对角线:平行四边形的对角线互相平分.
所以四个选项中A、C、D不正确,
故选B.
此题主要考查了平行四边形的性质,正确把握平行四边形的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、35°
【解析】
根据折叠的性质可得∠ECB=∠ECF,CB=CF,根据菱形的性质可得CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,求出等腰三角形DCF的顶角∠DCF,即可求出∠ECF的度数
【详解】
解:在菱形ABCD中,CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,
根据折叠可得:∠ECB=∠ECF,CB=CF,
∴CF=CD
∴∠DCF=180°-70°-70°=40°,
∴∠ECF=(∠BCD-∠DCF)=35°.
故答案为35°.
本题考查图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
10、1
【解析】
先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.
【详解】
由1-2x<3,得:x>-1,
由 ≤2,得:x≤3,
所以不等式组的解集为:-1<x≤3,
它的整数解为1、1、2、3,
所有整数解的积是1.
故答案为1.
此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
11、-5、-4、-3、-2、-1
【解析】
求出不等式的解集,取解集范围内的负整数即可.
【详解】
解:移项得:
合并同类项得:
系数化为1得:
即
所以原不等式的负整数解为:-5、-4、-3、-2、-1
故答案为:-5、-4、-3、-2、-1
本题主要考查了求不等式的整数解,确定不等式的解集是解题的关键.
12、
【解析】
根据图像即可得出答案.
【详解】
∵
即的函数图像在的下方
∴x>-2
故答案为x>-2
本题考查的是一次函数,难度适中,需要熟练掌握一次函数的图像与性质.
13、
【解析】
绝对值
相关试卷
这是一份2025届安徽省宿州市泗县九上数学开学预测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省宿州市时村中学数学九上开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省宿州市十三所重点中学数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
