终身会员
搜索
    上传资料 赚现金

    2025届北京海淀人大附数学九上开学统考试题【含答案】

    立即下载
    加入资料篮
    2025届北京海淀人大附数学九上开学统考试题【含答案】第1页
    2025届北京海淀人大附数学九上开学统考试题【含答案】第2页
    2025届北京海淀人大附数学九上开学统考试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届北京海淀人大附数学九上开学统考试题【含答案】

    展开

    这是一份2025届北京海淀人大附数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为( )

    A.B.C.D.
    2、(4分)一次函数y=kx+m的图象如图所示,若点(0,a),(﹣2,b),(1,c)都在函数的图象上,则下列判断正确的是( )
    A.a<b<cB.c<a<bC.a<c<bD.b<a<c
    3、(4分)如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )
    A.6B.8C.10D.12
    4、(4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,乙从B地到A地需要( )分钟
    A.12B.14C.18D.20
    5、(4分)定义,当时,,当<时,;已知函数,则该函数的最大值是( )
    A.B.C.D.
    6、(4分)下列二次根式中,不是最简二次根式的是( )
    A.B.C.D.
    7、(4分) “龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是( )
    A.B.C.D.
    8、(4分)如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于( )
    A.60°B.65°C.75°D.80°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)使分式的值为0,这时x=_____.
    10、(4分)如图是一个棱长为6的正方体盒子,一只蚂蚁从棱上的中点出发,沿盒的表面爬到棱上后,接着又沿盒子的表面爬到盒底的处.那么,整个爬行中,蚂蚁爬行的最短路程为__________.
    11、(4分)如果a2-ka+81是完全平方式,则k=________.
    12、(4分)若关于的一元二次方程有两个相等的实数根,则的值是__________.
    13、(4分)如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,则AB的长为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解方程:
    (1).
    (2).
    15、(8分)一个二次函数的图象经过(﹣1,﹣1),(0,0),(1,9)三点
    (1)求这个二次函数的解析式.
    (2)若另外三点(x1,21),(x2,21),(x1+x2,n)也在该二次函数图象上,求n的值.
    16、(8分)计算:
    当时,求代数式的值
    17、(10分)计算:
    (1)
    (2)(﹣)(+)+×
    18、(10分)如图,在△ABC中,AB=6,AC=8,D是AB的中点.若在AC上存在一点E,使得△ADE与原三角形相似.
    (1)确定E的位置,并画出简图:
    (2)求AE的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.
    20、(4分)把一个转盘平均分成三等份,依次标上数字1、2、3,自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字记作y,则x与y的和为偶数的概率为______.
    21、(4分)已知点,在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为4,则_______.
    22、(4分)若二次根式在实数范围内有意义,则x的取值范围是_____.
    23、(4分)如果关于的一次函数的图像不经过第三象限,那么的取值范围________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.
    (1)该水果店主购进第一批这种水果的单价是多少元?
    (2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.
    25、(10分)△ABC在平面直角坐标系xOy中的位置如图所示.
    (1)作△ABC关于点C成中心对称的△A1B1C1.
    (2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
    (3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
    26、(12分)初三年级学习压力大,放学后在家自学时间较初一、初二长,为了解学生学习时间,该年级随机抽取25%的学生问卷调查,制成统计表和扇形统计图,请你根据图表中提供的信息回答下列问题:
    (1)初三年级共有学生_____人.
    (2)在表格中的空格处填上相应的数字.
    (3)表格中所提供的学生学习时间的中位数是_____,众数是_____.

    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.
    【详解】
    解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
    在Rt△ACB′,
    所以它爬行的最短路程为13cm.
    故选:C.
    本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
    2、B
    【解析】
    由一次函数y=kx+m的图象,可得y随x的增大而减小,进而得出a,b,c的大小关系.
    【详解】
    解:由图可得,y随x的增大而减小,
    ∵﹣2<0<1,
    ∴c<a<b,
    故选:B.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    3、C
    【解析】
    由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.
    ∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.
    故选C.
    本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
    4、A
    【解析】
    根据题意,得到路程和甲的速度,然后根据相遇问题,设乙的速度为x,列出方程求解,然后即可求出乙需要的时间.
    【详解】
    解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,
    ∴甲的速度是:1÷6=千米/分钟,
    由纵坐标看出AB两地的距离是16千米,
    设乙的速度是x千米/分钟,由题意,得:
    10x+16×=16,
    解得:x=,
    ∴乙从B地到A地需要的时间为:(分钟);
    故选:A.
    本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.
    5、B
    【解析】
    根据直线y=x-3和直线y=2x+3,知它们的交点的坐标为(-6,-1),再根据新定义讨论:x≤-6,y=2x+3,利用一次函数的性质得到y有最大值-1;x>-6时,y=x-3,则x=-6时,利用一次函数的性质得到y有最大值-1;
    【详解】
    解:当x-3≥2x+3,解得x≤-6时,
    y=min(x-3,2x+3)=2x+3,则x=-6时,y有最大值-1;
    当x-3-6时,
    y=min(x-3,2x+3)=x-3,则x=-6时,y有最大值-1;
    所以该函数的最大值是-1.
    故选:B.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    6、C
    【解析】
    根据最简二次根式的定义对各选项分析判断即可.
    【详解】
    解:A、是最简二次根式,不合题意,故本选项错误;
    B、是最简二次根式,不合题意,故本选项错误;
    C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;
    D、是最简二次根式,不合题意,故本选项错误;
    故选C.
    本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.
    7、B
    【解析】
    【分析】根据领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点,即可判断.
    【详解】领先的兔子看着缓慢爬行的乌龟,兔子骄傲起来,睡了一觉,在图形上来看在一段时间内兔子所行路程不变,当它醒来时,发现乌龟快到了终点了,于是急忙追赶,但为时已晚,乌龟先到达了终点,说明乌龟到达终点时兔子还没到达,所以排除A、C、D,
    所以符合题意的是B,
    故选B.
    【点睛】本题考查了函数的图象,解答本题的关键是读懂题意及图象,弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.
    8、C
    【解析】
    连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
    【详解】
    连接BD,
    ∵四边形ABCD为菱形,∠A=60°,
    ∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
    ∵P为AB的中点,
    ∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
    ∴∠PDC=90°,
    ∴由折叠的性质得到∠CDE=∠PDE=45°,
    在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
    故选:C.
    此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
    答案为1.
    考点:分式方程的解法
    10、15
    【解析】
    根据题意,先将正方体展开,再根据两点之间线段最短求解.
    【详解】
    将上面翻折起来,将右侧面展开,如图,连接,依题意得:
    ,,
    ∴.
    故答案:15
    此题考查最短路径,将正方体展开,根据两点之间线段最短,运用勾股定理是解题关键.
    11、±18.
    【解析】
    利用完全平方公式的结构特征判断即可确定出k的值.
    【详解】
    ∵二次三项式a2-ka+81是完全平方式,
    ∴k=±18,
    故答案为:±18.
    此题考查完全平方式,解题关键在于掌握运算法则
    12、1
    【解析】
    因为关于的一元二次方程有两个相等的实数根,故 ,代入求解即可.
    【详解】
    根据题意可得: 解得:m=1
    故答案为:1
    本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.
    13、1
    【解析】
    分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,进而可求出AB的值.
    详解:连接DE交AC于P,连接BD,BP,
    由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
    ∴PE+PB=PE+PD=DE,
    即DE就是PE+PB的最小值,
    ∵∠BAD=60°,AD=AB,
    ∴△ABD是等边三角形,
    ∵AE=BE,
    ∴DE⊥AB(等腰三角形三线合一的性质)
    在Rt△ADE中,DE=,
    ∴AD1=4,
    ∴AD=AB=1.
    点睛:本题主要考查轴对称-最短路线问题和菱形的性质的知识点,解答本题的关键,此题是道比较不错的习题.
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2),
    【解析】
    (1)先移项,然后用因式分解法求解即可;
    (2)用求根公式法求解即可.
    【详解】
    解:(1),

    ,.
    (2),,,,

    因此原方程的根为,.
    本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
    15、 (1)y=4x2+5x;(2)n=1.
    【解析】
    (1)先设出二次函数的解析式,然后将已知条件代入其中并解答即可;
    (2)由抛物线的对称轴对称x1+x2=﹣,代入解析式即可求得n的值.
    【详解】
    解:(1)设二次函数的关系式为y=ax2+bx+c(a≠1),
    ∵二次函数的图象经过点(1,1),(﹣1,﹣1),(1,9)三点,
    ∴,解得,
    所以二次函数的解析式是:y=4x2+5x;
    (2)∵二次函数为y=4x2+5x,
    ∴对称轴为直线x=﹣=﹣,
    ∵三点(x1,21),(x2,21),(x1+x2,n)在该二次函数图象上,
    ∴=﹣,
    ∴x1+x2=﹣,
    ∴n=4×(﹣)2+5×(﹣)=1.
    本题主要考查二次函数,掌握二次函数的图象和性质以及待定系数法是解题的关键.
    16、(1);(2)9
    【解析】
    (1)先将所有的二次根式化为最简二次根式,再进行乘法运算,最后进行加法运算.
    (2)先将变形为再代入求解即可.
    【详解】
    解:原式
    原式
    当时
    原式=
    本题考查的知识点是二次根式的混合运算,掌握二次根式混合运算的运算顺序以及运算法则是解此题的关键.
    17、(1);(2)3.
    【解析】
    (1)先化简各二次根式,再合并同类二次根式;
    (2)根据二次根式的计算法则进行计算即可.
    【详解】
    解:(1)原式= ;
    (2)原式=6-5+2=3.
    18、(1)画出简图见解析;(2)AE的长为4或.
    【解析】
    (1)分别从△ADE∽△ABC与△ADE∽△ACB去求解,即可画出图形;
    (2)分别从当时,△ADE∽△ABC与当时,△ADE∽△ACB去分析求解即可求得答案.
    【详解】
    画出简图如图所示:
    当DE1∥BC时,△ADE∽△ABC
    当∠ADE2=∠C时,△ADE∽△ACB
    (2)∵D是AB的中点,AB=6,
    ∴AD=3,
    ∵∠A是公共角,
    ∴当时,△ADE∽△ABC,
    ∴,
    解得:AE1=4;
    ∴当时,△ADE∽△ACB,
    ∴,
    解得AE2=,
    ∴AE的长为4或.
    本题考查了相似三角形的判定与性质,正确地进行分类讨论,熟练运用相似三角形的相关知识是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、16cm2
    【解析】
    根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.
    【详解】
    解:∵点A、B、C、D分别是四个正方形的中心
    ∴每一个阴影部分的面积等于正方形的
    ∴正方形重叠的部分(阴影部分)面积和
    故答案为:
    本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.
    20、
    【解析】
    画出树状图得出所有等可能结果与两数和为偶数的结果数,然后根据概率公式列式计算即可得解.
    【详解】
    解:根据题意,画出树状图如下:
    一共有9种等可能情况,其中x与y的和为偶数的有5种结果,
    ∴x与y的和为偶数的概率为 ,
    故答案为:.
    本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    21、2
    【解析】
    如图,由△ABP的面积为4,知BP•AP=1.根据反比例函数中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.
    【详解】
    如图
    解:∵△ABP的面积为 BP•AP=4,
    ∴BP•AP=1,
    ∵P是AC的中点,
    ∴A点的纵坐标是B点纵坐标的2倍,
    又∵点A、B都在双曲线(x>0)上,
    ∴B点的横坐标是A点横坐标的2倍,
    ∴OC=DP=BP,
    ∴k=OC•AC=BP•2AP=2.
    故答案为:2.
    主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题时一定要正确理解k的几何意义.
    22、x>2019
    【解析】
    根据二次根式的定义进行解答.
    【详解】
    在实数范围内有意义,即x-2019 0,所以x的取值范围是x 2019.
    本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.
    23、
    【解析】
    由一次函数的图象不经过第三象限,则,并且,解两个不等式即可得到m的取值范围.
    【详解】
    解:∵一次函数的图像不经过第三象限,
    ∴,,
    解得:,
    故答案为.
    本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
    二、解答题(本大题共3个小题,共30分)
    24、(1)水果店主购进第一批这种水果的单价是20元;(2)a的最大值是1.
    【解析】
    (1)根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验;
    (2)根据题意可以得到关于a的不等式,从而可以求得a的最大值.
    【详解】
    (1)设第一批水果的单价是x元,

    解得,x=20,
    经检验,x=20是原分式方程的解,
    答:水果店主购进第一批这种水果的单价是20元;
    (2)由题意可得,

    解得,a≤1,
    答:a的最大值是1.
    本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,利用分式方程和不等式的性质解答.
    25、(1)见解析(2)见解析(3)(,0)
    【解析】
    解;作图如图所示,可得P点坐标为:(,0)。
    (1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象。
    (2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2。
    (3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可。
    26、(1)1440;(2)见解析;(3)2.21、3.1.
    【解析】
    (1)先利用学习1小时的人数除以它所占的百分比得调查的总人数,然后用此人数除以21%得到初三年级的人数;
    (2)用调查的总人数分别乘以20%和30%得到学习1.1小时和3.1小时的人数;
    (3)根据中位数和众数的定义求解.
    【详解】
    (1)72÷20%=360,
    360÷21%=1440,
    所以初三年级共有学生1440人;
    (2)学习1.1小时的人数为360×20%=72(人),
    学习3.1小时的人数为360×30%=108(人);
    (3)表格中所提供的学生学习时间的中位数是=2.21,众数是3.1.
    本题考查了扇形图:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了众数和中位数.
    题号





    总分
    得分
    学习时间(h)
    1
    1.5
    2
    2.5
    3
    3.5
    人数
    72
    36
    54
    18

    相关试卷

    2025届北京市海淀区人大附中九年级数学第一学期开学联考试题【含答案】:

    这是一份2025届北京市海淀区人大附中九年级数学第一学期开学联考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市昌平区北京人大附中昌平校区九上数学开学检测试题【含答案】:

    这是一份2025届北京市昌平区北京人大附中昌平校区九上数学开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京石景山九上数学开学统考试题【含答案】:

    这是一份2025届北京石景山九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map