2025届北京市大兴区名校九年级数学第一学期开学达标检测模拟试题【含答案】
展开
这是一份2025届北京市大兴区名校九年级数学第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,直线与y轴交于点B(0,4),与x轴交于点A,∠BAO=30°,将△AOB沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为( )
A.﹣8B.﹣16C.﹣8D.﹣12
2、(4分)如图,在中,于点若则等于( )
A.B.C.D.
3、(4分)下列各组数是勾股数的是( )
A.6,7,8B.1,,2
C.5,4,3D.0.3,0.4,0.5
4、(4分)如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论
①BE⊥AC
②四边形BEFG是平行四边形
③EG=GF
④EA平分∠GEF
其中正确的是( )
A.①②③B.①②④C.①③④D.②③④
5、(4分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为( )
A.13B.14C.15D.16
6、(4分)已知关于x的方程的解是正数,那么m的取值范围为( )
A.m>-6且m≠2B.m<6C.m>-6且m≠-4D.m<6且m≠-2
7、(4分)在多边形内角和公式的探究过程中,主要运用的数学思想是( )
A.化归思想B.分类讨论C.方程思想D.数形结合思想
8、(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米B.1.5米C.2.2米D.2.4米
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
10、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
11、(4分)把多项式因式分解成,则的值为________.
12、(4分)点A(﹣3,0)关于y轴的对称点的坐标是__.
13、(4分)通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m的地方作为测量部位.某树栽种时的树围为5 cm,以后树围每年增长3 cm.假设这棵数生长x年其树围才能超过2.4 m.列满足x的不等关系:__________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.
15、(8分)计算化简
(1)
(2)
16、(8分)已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.
(1)若AM平分∠BMD,求BM的长;
(2)过点A作AE⊥DM,交DM所在直线于点E.
①设BM=x,AE=y求y关于x的函数关系式;
②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.
17、(10分)如图,在直角坐标系中,每个小方格都是边长为的正方形,的顶点均在格点上,点的坐标是.
先将沿轴正方向向上平移个单位长度,再沿轴负方向向左平移个单位长度得到,画出,点坐标是________;
将绕点逆时针旋转,得到,画出,并求出点的坐标是________;
我们发现点、关于某点中心对称,对称中心的坐标是________.
18、(10分)如图,直线l1:y1=−x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.
(1)求两直线交点D的坐标;
(2)求△ABD的面积;
(3)根据图象直接写出y1>y2时自变量x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图在△ABC中,AH⊥BC于点H,在AH上取一点D,连接DC,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。
20、(4分)分解因式:5x3﹣10x2=_______.
21、(4分)已知点关于轴的对称点为,且在直线上,则____.
22、(4分)在平面直角坐标系中,中,点,若随变化的一族平行直线与(包括边界)相交,则的取值范围是______.
23、(4分)若关于有增根,则_____;
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.
25、(10分)如图,△ABC中,∠ACB=90°,D是AB中点,过点B作直线CD的垂线,垂足为E,
求证:∠EBC=∠A.
26、(12分)将矩形纸片沿对角线翻折,使点的对应点(落在矩形所在平面内,与相交于点,接.
(1)在图1中,
①和的位置关系为__________________;
②将剪下后展开,得到的图形是_________________;
(2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若成立,请对结论②加以证明,若不成立,请说明理由
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先过C作CD⊥y轴,垂足为D,再根据勾股定理计算CD的长,进而计算C点的坐标,在代入反比例函数的解析式中,进而计算k的值.
【详解】
解:过点C作CD⊥y轴,垂足为D,
由折叠得:OB=BC=4,∠OAB=∠BAC=30°
∴∠OBA=∠CBA=60°=∠CBD,
在Rt△BCD中,∠BCD=30°,
∴BD=BC=2,CD= ,
∴C(﹣,6)代入得:k=﹣×6=﹣
故选:D.
本题主要考查求解反比例函数的解析式,关键在于构造辅助线计算CD的长度.
2、B
【解析】
根据平行四边形的性质和三角形的内角和定理求解.
【详解】
在中,于点
∴
∵
∴
在中,
故选:B
本题考查了平行四边形的性质和三角形内角和定理,解题的关键在于把已知角转化到中求解.
3、C
【解析】
欲求证是否为勾股数,这里给出三边的长,只要验证即可.
【详解】
解:、,故此选项错误;
、不是整数,故此选项错误;
、,故此选项正确;
、0.3,0.4,0.5,勾股数为正整数,故此选项错误.
故选:.
本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.
4、B
【解析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.
【详解】
∵四边形ABCD是平行四边形,
∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
又∵BD=2AD,
∴OB=BC=OD=DA,且点E 是OC中点,
∴BE⊥AC,
故①正确,
∵E、F分别是OC、OD的中点,
∴EF∥CD,EF=CD,
∵点G是Rt△ABE斜边AB上的中点,
∴GE=AB=AG=BG,
∴EG=EF=AG=BG,无法证明GE=GF,
故③错误,
∵BG=EF,BG∥EF∥CD,
∴四边形BEFG是平行四边形,
故②正确,
∵EF∥CD∥AB,
∴∠BAC=∠ACD=∠AEF,
∵AG=GE,
∴∠GAE=∠AEG,
∴∠AEG=∠AEF,
∴AE平分∠GEF,故④正确,
故选B.
本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
5、D
【解析】
先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.
【详解】
如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BAE,
∴∠BAE=∠BEA,
∴AB=BE,同理可得AB=AF,
∴AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形,
∴AE⊥BF,OA=OE,OB=OF=BF=6,
∴OA==8,
∴AE=2OA=16.
故选D.
本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.
6、C
【解析】
先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.
【详解】
将分式方程转化为整式方程得:1x+m=3x-2
解得:x=m+2.
∵方程得解为正数,所以m+2>0,解得:m>-2.
∵分式的分母不能为0,
∴x-1≠0,
∴x≠1,即m+2≠1.
∴m≠-3.
故m>-2且m≠-3.
故选:C.
本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.
7、A
【解析】
根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.
【详解】
解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.
故答案为A.
本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.
8、C
【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据题意,结合图形可知,所求单价即为加权平均数,利用加权平均数的定义计算解答即可
【详解】
由加权平均数得,24×25%+20×1%+10×60%=6+3+6=1,
故答案为:1.
考查了加权平均数的定义,熟记加权平均数的定义,掌握有理数的混合运算法则是解题关键.
10、0,2
【解析】
求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
【详解】
解:移项得,﹣2x﹣3x>﹣6﹣4,
合并同类项得,﹣5x>﹣20,
系数化为2得,x<2.
故其非负整数解为:0,2.
本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
11、
【解析】
根据多项式的乘法法则计算,然后即可求出m的值.
【详解】
∵=x2+6x+5,
∴m=6.
故答案为:6.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解是乘法运算的逆运算.
12、(3,0)
【解析】
试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)
考点:关于y轴对称的点的坐标.
13、5+3x>240
【解析】
因为树栽种时的树围为5cm,以后树围每年增长约3cm,x年后树围将达到(5+3x)cm.
不等关系:x年其树围才能超过2.4m.
【详解】
根据题意,得5+3x>240.
故答案为:5+3x>240.
本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
三、解答题(本大题共5个小题,共48分)
14、y=2x﹣1.
【解析】
设一次函数的解析式是:y=kx+b,把(3,-5)与(-4,9)代入即得到一个关于k,b的方程组,解方程组即可求解.
【详解】
解:设一次函数为
因为它的图象经过,
所以 解得:
所以这个一次函数为
本题考查了待定系数法求函数的解析式,正确解方程组是关键.
15、(1)(2)
【解析】
(1)原式第一项利用零指数公式化简,第二项利用负指数公式化简,最后一项利用绝对值的代数意义化简,计算即可得到结果;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.
【详解】
解:(1)原式=1+3-(-2)=6-;
(2)原式==
本题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
16、(1)1或3;(2)①y=.②1或3或1.
【解析】
(1)考虑∠DMB为锐角和钝角两种情况即可解答;
(2) ①作MH⊥AD于H,根据勾股定理,用被开方式含x的二次根式表示DM,根据△ADM面积的两种算法建立等式,即可求出y关于x的函数关系式;②分AB=AE和EA=EB两种情况讨论求解.
【详解】
解:(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=2.
当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,
在Rt△DMH中,DM=AD=5,DH=2,
∴MH===1,
∴BM=BH-MH=1,
当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=1,
∴BM′=BH+HM′=3.
综上所述,满足条件的BM的值为1或3.
(2)①如图2中,作MH⊥AD于H.
在Rt△DMH中,DM==,
∵S△ADM=•AD•MH=•DM•AE,
∴5×2=y•
∴y=.
②如图2中,当AB=AE时,y=2,此时5×2=2,
解得x=1或3.
如图1中,当EA=EB时,DE=EM,
∵AE⊥DM,
∴DA=AM=5,
在Rt△ABM中,BM==1.
综上所述,满足条件的BM的值为1或3或1.
故答案为:(1)1或3;(2)①y=.②1或3或1.
本题考查了直角梯形的性质,矩形的判定与性质,勾股定理,无理方程,等腰三角形的性质.
17、, , .
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案;
(3)直接利用关于点对称的性质得出对称中心即可.
【详解】
(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(−2,1);
故答案为(−2,1);
(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(−5,0);
故答案为(−5,0);
(3)点C. C2关于某点中心对称,对称中心的坐标是:(−3,−1).
故答案为(−3,−1).
本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.
18、(1)D点坐标为(4,3)(1)15;(3)x<4
【解析】
试题分析:(1)先得到两函数的解析式,组成方程组解求出D的坐标;(1)由y1=
x+1可知,C点坐标为(0,1),分别求出△ABC和△ACD的面积,相加即可.(3)由图可直接得出y1>y1时自变量x的取值范围.
试题解析:(1)将A(0,6)代入y1=−x+m得,m=6;将B(-1,0)代入y1=kx+1得,k=
组成方程组得解得 故D点坐标为(4,3);
(1)由y1=x+1可知,C点坐标为(0,1),S△ABD=S△ABC+S△ACD=×5×1+×5×4=15;
(3)由图可知,在D点左侧时,y1>y1,即x<4时,出y1>y1.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,根据垂直的定义得到∠DHC=90°,由平行线的性质得到∠EBC=90°.由线段垂直平分线的性质得到BK=DH.推出四边形DKBH为矩形,得到DK⊥BE,根据等腰三角形的性质得到DE=DB,∠EDB=2∠KDB,通过△EDC≌△BDA,得到AB=CE,根据勾股定理得到,于是得到结论.
【详解】
解:如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,
∵DH⊥BC于H,
∴∠DHC=90°,
∵BE∥DH,
∴∠EBC=90°,
∵∠EBC=90°,
∵K为BE的中点,BE=2DH,
∴BK=DH.
∵BK∥DH,
∴四边形DKBH为矩形,DK∥BH,
∴DK⊥BE,∠KDB=∠DBC,
∴DE=DB,∠EDB=2∠KDB,
∵∠ADC=2∠DBC,
∴∠EDB=∠ADC,
∴∠EDB+∠EDA=∠ADC+∠EDA,即∠EDC=∠BDA,
在△EDC、△BDA中,
,
∴△EDC≌△BDA,
∴AB=CE,
∴,
∴AB=.
本题考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定与性质,矩形的判定与性质,勾股定理的运用.关键是根据已知条件构造全等三角形.
20、5x2(x-2)
【解析】
5x3-10x2=2x2(x-2)
21、
【解析】
根据点P的坐标可求出点P′的坐标,再利用一次函数图象上点的坐标特征可得到关于k的一元一次方程,解之即可求出k值.
【详解】
解:∵点关于轴的对称点为
∴点P'的坐标为(1,-2)
∵点P'在直线上,
∴-2=k+3
解得:k=-5 ,
故答案为:-5.
本题考查了一次函数图象上点的坐标特征,关于x轴、y轴对称的点的坐标,掌握待定系数法求一次函数解析式是解题的关键.
22、
【解析】
根据题意,可知点B到直线的距离最短,点C到直线的距离最长,求出两个临界点b的值,即可得到取值范围.
【详解】
解:根据题意,点,
∵直线与(包括边界)相交,
∴点B到直线的距离了最短,点C到直线的距离最长,
当直线经过点B时,有
,
∴;
当直线经过点C时,有
,
∴;
∴的取值范围是:.
本题考查了一次函数的图像和性质,以及一次函数的平移问题,解题的关键是掌握一次函数的性质,一次函数的平移,正确选出临界点进行解题.
23、1
【解析】
方程两边都乘以最简公分母(x –1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.
【详解】
解:方程两边都乘(x﹣1),得
1-ax+3x=3x﹣3,
∵原方程有增根
∴最简公分母x﹣1=0,即增根为x=1,
把x=1代入整式方程,得a=1.
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.
【详解】
∵在△ABC中,AB=AC,BD=CD,
∴AD⊥BC.
又∵CE⊥AB,
∴∠ADB=∠CEB=90°,
又∵∠B=∠B,
∴△ABD∽△CBE.
本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.
25、详见解析
【解析】
由直角三角形斜边中线等于斜边的一半可得CD=BD,从而可得∠DCB=∠ABC,再根据直角三角形两锐角互余通过推导即可得出答案.
【详解】
∵∠ACB=90°,
∴∠A+∠ABC=90°,
又∵D是AB中点,
∴CD=BD,
∴∠DCB=∠ABC,
又∵∠E=90°,
∴∠ECB+∠EBC=90°,
∴∠EBC=∠A.
本题考查了直角三角形斜边中线的性质,直角三角形两锐角互余,等腰三角形的性质,熟练掌握和灵活运用相关性质是解题的关键.
26、 (1)①平行;②菱形; (2)结论①、②都成立,理由详见解析.
【解析】
(1)①由平行线的性质和折叠的性质可得∠DAC=∠ACE,由∠AB'C=∠ADC=90°,可证点A,点C,点D,点B'四点共圆,可得∠ADB'=∠ACE=∠DAC,可得AC∥B'D;②由菱形的定义可求解;
(2)都成立,设点E的对应点为F,由平行线的性质和折叠的性质可得∠DAC=∠ACE,AF=AE,CE=CF,可得AF=AE=CE=CF,可得四边形AECF是菱形.
【详解】
解:(1)①∵四边形ABCD是矩形
∴AD∥BC,∠B=∠ADC=90°
∴∠DAC=∠ACB
∵将矩形纸片ABCD沿对角线AC翻折,
∴∠AB'C=∠B=90°,∠ACB=∠ACE
∴∠DAC=∠ACE,
∴AE=EC
∵∠AB'C=∠ADC=90°
∴点A,点C,点D,点B'四点共圆,
∴∠ADB'=∠ACE,
∴∠ADB'=∠DAC
∴B'D∥AC,
故答案为:平行
②∵将△AEC剪下后展开,AE=EC
∴展开图形是四边相等的四边形,
∴展开图形是菱形
(2)都成立,
如图2,设点E的对应点为F,
∵四边形ABCD是平行四边形
∴AD∥BC,
∴∠DAC=∠ACB
∵将矩形纸片ABCD沿对角线AC翻折,
∴∠ACB=∠ACE,AF=AE,CE=CF
∴∠DAC=∠ACE,
∴AE=EC
∴AF=AE=CE=CF
四边形是菱形.
本题是四边形综合题,考查了矩形的性质,平行四边形的性质,折叠的性质,菱形的判定,灵活运用这些性质进行推理是本题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届北京市大兴区名校数学九年级第一学期开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黄冈中学九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京市中学关村中学九年级数学第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。