年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】

    2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】第1页
    2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】第2页
    2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】

    展开

    这是一份2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是,用式子表示是.其中错误的个数有( )
    A.0个B.1个C.2个D.3个
    2、(4分)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是( )
    A.正三角形B.正方形C.正五边形D.正六边形
    3、(4分)已知点A的坐标为(3,﹣6),则点A所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )
    A.B.C.D.
    5、(4分)函数y=x-1的图象是( )
    A.B.
    C.D.
    6、(4分)在以下列三个数为边长的三角形中,不能组成直角三角形的是( )
    A.4、7、9B.5、12、13C.6、8、10D.7、24、25
    7、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为( )
    A.3B.4C.5D.6
    8、(4分)一元二次方程的根的情况是( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.没有实数根D.不能确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.
    10、(4分)如果反比例函数的图象在当的范围内,随着的增大而增大,那么的取值范围是________.
    11、(4分)如果的平方根是,则_________
    12、(4分)计算:(1)=______;(2)=______;(3) =______.
    13、(4分)当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1㎝/秒的速度移动,同时点Q从点B开始沿BC边向点C以2㎝/秒的速度移动.()
    (1)如果ts秒时,PQ//AC,请计算t的值.
    (2)如果ts秒时,△PBQ的面积等于S㎝2,用含t的代数式表示S.
    (3)PQ能否平分△ABC的周长?如果能,请计算出t值,不能,说明理由.
    15、(8分)(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为
    A.平行四边形
    B.菱形
    C.矩形
    D.正方形
    (2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
    求证:四边形AFF′D是菱形.
    16、(8分)已知Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a,b,c,设△ABC的面积为S.
    (1)填表:
    (2)①如果m=(c+b-a)(c-b+a),观察上表猜想S与m之间的数量关系,并用等式表示出来.
    ②证明①中的结论.
    17、(10分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
    (1)试销时该品种苹果的进货价是每千克多少元?
    (2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?
    18、(10分)已知一次函数的图象经过,两点.
    (1)求这个一次函数的解析式;
    (2)试判断点是否在这个一次函数的图象上;
    (3)求此函数图象与轴,轴围成的三角形的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的
    坡度i=1:2.4,CD长为13米,则河堤的高BE为 米.
    20、(4分)如图,是将绕点顺时针旋转得到的.若点,,在同一条直线上,则的度数是______.
    21、(4分)如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.
    22、(4分)已知,点P在轴上,则当轴平分时,点P的坐标为______.
    23、(4分)化简:=_______________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由两工程队先后接力完成.工作队每天整治12米,工程队每天整治8米,共用时20天.
    (1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:
    甲: 乙:
    根据甲、乙两名同学所列的方程组,请你分别指出未知数表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:
    甲:x表示________________,y表示_______________;
    乙:x表示________________,y表示_______________.
    (2)求两工程队分别整治河道多少米.(写出完整的解答过程)
    25、(10分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.
    26、(12分)求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:根据题意先画出图形,并写出已知、求证,再证明).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    直接利用相关实数的性质分析得出答案.
    【详解】
    ①实数和数轴上的点是一一对应的,正确;
    ②无理数是开方开不尽的数,错误,无理数是无限不循环小数;
    ③负数没有立方根,错误,负数有立方根;
    ④16的平方根是±4,用式子表示是:,故此选项错误。
    故选:D.
    此题考查实数,解题关键在于掌握其定义.
    2、C
    【解析】
    平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.
    【详解】
    解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,
    所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.
    故选:C
    用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
    3、D
    【解析】
    在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.
    【详解】
    横纵坐标同是正数在第一象限,横坐标负数纵坐标正数在第二象限,横纵坐标同是负数在第三象限,横坐标正数纵坐标负数在第四象限,点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.
    此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.
    4、D
    【解析】
    三角形数=1+2+3+……+n,很容易就可以知道一个数是不是三角形数.结合公式,代入验证三角形数就可以得到答案.
    【详解】
    A.中3和10是三角形数,但是不相邻;
    B.中16、9均是正方形数,不是三角形数;
    C.中18不是三角形数;
    D.中28=1+2+3+4+5+6+7,36=1+2+3+4+5+6+7+8,所以D正确;
    故选D.
    此题考查此题考查规律型:数字的变化类,勾股数,解题关键在于找到变换规律.
    5、D
    【解析】
    ∵一次函数解析式为y=x-1,
    ∴令x=0,y=-1.
    令y=0,x=1,
    即该直线经过点(0,-1)和(1,0).
    故选D.
    考点:一次函数的图象.
    6、A
    【解析】
    根据勾股定理逆定理逐项分析即可.
    【详解】
    解:A. ∵42+72≠92,∴4、7、9不能组成直角三角形;
    B. ∵52+122=132,∴ 5、12、13能组成直角三角形;
    C. ∵62+82=102,∴6、8、10能组成直角三角形;
    D. ∵72+242=252,∴7、24、25能组成直角三角形;
    故选A.
    本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
    7、C
    【解析】
    ∠C=90°,AC=3,BC=4,,
    所以AB=5.故选C.
    8、B
    【解析】
    根据根的判别式判断即可.
    【详解】
    ∵,
    ∴该方程有两个相等的实数根,
    故选:B.
    此题考查一元二次方程的根的判别式,熟记根的三种情况是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    利用勾股定理直接计算可得答案.
    【详解】
    解:由勾股定理得:斜边
    故答案为:.
    本题考查的是勾股定理的应用,掌握勾股定理是解题的关键.
    10、
    【解析】
    根据反比例函数图象在当x>0的范围内,y随着x的增大而增大,可知图象在第四象限有一支,由此确定反比例函数的系数(k-2)的符号.
    【详解】
    解:∵当时,随着的增大而增大,
    ∴反比例函数图象在第四象限有一支,
    ∴,解得,
    故答案为:.
    本题考查了反比例函数的性质.对于反比例函数,(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.
    11、81
    【解析】
    根据平方根的定义即可求解.
    【详解】
    ∵9的平方根为,
    ∴=9,
    所以a=81
    此题主要考查平方根的性质,解题的关键是熟知平方根的定义.
    12、
    【解析】
    根据二次根式的乘法公式:和除法公式计算即可.
    【详解】
    解:(1);
    (2);
    (3).
    故答案为:;;.
    此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.
    13、-7.
    【解析】
    根据负整数指数幂的意义化为分式方程求解即可.
    【详解】
    ∵与的值相等,
    ∴=,
    ∴,
    两边乘以(x+1)(x-2),得
    2 (x-2)=3(x+1),
    解之得
    x=-7.
    经检验x=-7是原方程的根.
    故答案为-7.
    本题考查了负整数指数幂的意义及分式方程的解法,解分式方程的基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)S=();(3)PQ不能平分△ABC的周长,理由见解析.
    【解析】
    (1)由题意得, PB=6-t,BQ=2t,根据PQ∥AC,得到,代入相应的代数式计算求出t的值;
    (2)由题意得, PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=BP×BQ,列出表达式即可;
    (3)由题意根据勾股定理求得AC=10cm,利用PB+BQ是△ABC周长的一半建立方程解答即可.
    【详解】
    解:(1)由题意得,BP=6-t,BQ=2t,
    ∵PQ∥AC,
    ∴,即,
    解得t=,
    ∴当t=时,PQ∥AC;
    (2)由题意得, PB=6-t,BQ=2t,
    ∵∠B=90°,
    ∴ BP×BQ=×2t×(6-t)= ,
    即ts秒时,S=();
    (3)PQ不能平分△ABC的周长.
    理由:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,
    ∴AC==10cm,
    设ts后直线PQ将△ABC周长分成相等的两部分,则AP=tcm,BQ=2tcm,BP=(6-t)cm,由题意得
    2t+6-t=×(6+8+10)
    解得:t=6>4,
    所以不存在直线PQ将△ABC周长分成相等的两部分,
    即PQ不能平分△ABC的周长.
    本题考查勾股定理的应用、相似三角形的性质和三角形的面积,灵活运用相似三角形的性质,结合图形求解是解题的关键.
    15、(1)C;(2)详见解析.
    【解析】
    (1)根据矩形的判定可得答案;
    (2)利用勾股定理求得AF=5,根据题意可得平行四边形AFF′D四边都相等,即可得证.
    【详解】
    解:(1)由题意可知AD与EE′平行且相等,
    ∵AE⊥BC,
    ∴四边形AEE′D为矩形
    故选C;
    (2) ∵AD=5,S□ABCD=15,∴AE=3,
    又∵在图2中,EF=4,
    ∴在Rt△AEF中,AF=,
    ∴AF=AD=5,
    又∵AF∥DF′,AF=DF′,
    ∴四边形AFF′D是平行四边形,
    又∵AF=AD,
    ∴四边形AFF′D是菱形.
    16、(1)6,30,60,4,6,10;(2)①S=m;②见解析
    【解析】
    (1)根据直角三角形的面积等于两条直角边的乘积除以2,可求得,把三边对应数值分别代入c-b+a,即得结果;
    (2)①通过图表中数据分析,可得4S=m,即得S与m的关系式;
    ②利用平方差公式和完全平方公式,把m展开化简,利用勾股定理即可证明.
    【详解】
    (1)直角三角形面积S=,代入数据分别计算得:,,,由,分别代入计算得:5-4+3=4,13-12+5=6,17-15+8 =10;
    (2)①结合图表可以看出:6×4÷4=6,20×6÷4=30,24×10÷4=60,即得m=4S,所以S=m;
    ②证明:∵m= (c+b-a)(c-b+a)
    = [c+(b-a)][(c-(b-a)]= [c2-(b-a)2]= [c2-(a2+b2)+2ab]
    在Rt△ABC中,c2=a2+b2,∴m=×2ab=ab,
    又∵S=ab,
    ∴S=m.
    本题考查了直角三角形的面积求法,平方差公式和完全平方公式的应用,勾股定理的应用,掌握直角三角形的三边关系以及平方差公式和完全平方公式是解题的关键.
    17、(1)试销时该品种苹果的进货价是每千克5元;(2)商场在两次苹果销售中共盈利4160元.
    【解析】
    解:(1) 设试销时该品种苹果的进货价是每千克x元

    解得x= 5
    经检验:x= 5是原方程的解,并满足题意
    答:试销时该品种苹果的进货价是每千克5元.
    (2) 两次购进苹果总重为:千克
    共盈利:元
    答:共盈利4160元.
    18、(1);(2)不在这个一次函数的图象上;(3)函数图象与轴,轴围成的三角形的面积=4.
    【解析】
    (1)利用待定系数法求一次函数解析式;
    (2)利用一次函数图象上点的坐标特征进行判断;
    (3)先利用一次函数解析式分别求出一次函数与坐标轴的两交点坐标,然后利用三角形面积公式求解.
    【详解】
    (1)设一次函数解析式为,
    把,代入得,解得,
    所以一次函数解析式为;
    (2)当时,,
    所以点不在这个一次函数的图象上;
    (3)当时,,则一次函数与轴的交点坐标为,
    当时,,解得,则一次函数与轴的交点坐标为,
    所以此函数图象与轴,轴围成的三角形的面积.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    在Rt△ABE中,根据tan∠BAE的值,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.
    解:作CF⊥AD于F点,
    则CF=BE,
    ∵CD的坡度i=1:2.4=CF:FD,
    ∴设CF=1x,则FD=12x,
    由题意得CF2+FD2=CD2
    即:(1x)2+(12x)2=132
    ∴x=1,
    ∴BE=CF=1
    故答案为1.
    本题主要考查的是锐角三角函数的定义和勾股定理的应用.
    20、
    【解析】
    根据旋转的性质,即可求出的度数.
    【详解】
    旋转,
    ,,


    故答案为:.
    本题考查了三角形的旋转问题,掌握旋转的性质是解题的关键.
    21、
    【解析】
    由DB=DC,∠C=70°可以得到∠DBC=∠C=70°,又由AD∥BC推出∠ADB=∠DBC=∠C=70°,而∠AED=90°,根据直角三角形两锐角互余即可求得答案.由此可以求出∠DAE.
    【详解】
    ∵DB=DC,∠C=70°,
    ∴∠DBC=∠C=70°,
    在平行四边形ABCD中,
    ∵AD∥BC,AE⊥BD,
    ∴∠ADB=∠DBC=∠C=70°,∠AED=90°,
    ∴∠DAE=-70°=20°.
    故填空为:20°.
    本题考查了平行四边形的性质、等腰三角形的性质、直角三角形两锐角互余的性质,熟练掌握相关性质与定理是解题的关键.
    22、
    【解析】
    作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.
    【详解】
    如图,作点A关于y轴对称的对称点
    ∵,点A关于y轴对称的对称点

    设直线的解析式为
    将点和点代入直线解析式中
    解得
    ∴直线的解析式为
    将代入中
    解得

    故答案为:.
    本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.
    23、
    【解析】
    分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.
    详解:原式=.
    点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)甲:表示工程队工作的天数,表示工程队工作的天数;
    乙:表示工程队整治河道的米数,表示工程队整治河道的米数.
    (2)两工程队分别整治了60米和120米.
    【解析】
    此题主要考查利用基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,运用不同设法列出不同的方程组解决实际问题.
    (1)此题蕴含两个基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,由此进行解答即可;
    (2)选择其中一个方程组解答解决问题.
    【详解】
    试题解析:(1)甲同学:设A工程队用的时间为x天,B工程队用的时间为y天,由此列出的方程组为

    乙同学:A工程队整治河道的米数为x,B工程队整治河道的米数为y,由此列出的方程组为

    故答案为: A工程队用的时间,B工程队用的时间,A工程队整治河道的米数,B工程队整治河道的米数;
    (2)选甲同学所列方程组解答如下:

    ②-①×8得4x=20,
    解得x=5,
    把x=5代入①得y=15,
    所以方程组的解为,
    A工程队整治河道的米数为:12x=60,
    B工程队整治河道的米数为:8y=120;
    答:A工程队整治河道60米,B工程队整治河道120米.
    考点:二元一次方程组的应用.
    25、见解析
    【解析】
    由菱形的性质可得,,然后根据角角边判定,进而得到.
    【详解】
    证明:∵菱形ABCD,
    ∴,,
    ∵,,
    ∴,
    在与中,

    ∴,
    ∴.
    本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.
    26、见解析
    【解析】
    分别作出AB、AC的垂直平分线,得到点M,N,根据全等三角形的性质、平行四边形的判定和性质证明结论.
    【详解】
    如图,点M,N即为所求作的点,
    已知:如图,△ABC中,点M,N分别是AB,AC的中点,连接MN,
    求证:MN∥BC,MN=BC
    证明:延长MN至点D,使得MN=ND,连接CD,
    在△AMN和△CDN中,

    ∴△AMN≌△CDN(SAS)
    ∴∠AMN=∠D,AM=CD,
    ∴AM∥CD,即BM∥CD,
    ∵AM=BM=CD,
    ∴四边形BMDC为平行四边形,
    ∴MN∥BC,MD=BC,
    ∵MN=MD,
    ∴MN=BC.
    本题考查的是三角形中位线定理、平行四边形的判定定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    题号





    总分
    得分
    三边a,b,c
    S
    c+b-a
    c-b+a
    3,4,5
    6
    5,12,13
    20
    8,15,17
    24
    三边a,b,c
    S
    c+b-a
    c-b+a
    3,4,5
    6
    6
    4
    5,12,13
    30
    20
    6
    8,15,17
    60
    24
    10

    相关试卷

    2025届北京市大兴区数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2025届北京市大兴区数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年龙岩市五县九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024年龙岩市五县九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map