2025届北京市西城区月坛中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份2025届北京市西城区月坛中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列长度的四根木棒,能与长度分别为2cm和5cm的木棒构成三角形的是( )
A.3B.4C.7D.10
2、(4分)如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为 ( )
A.105°B.112.5°C.120°D.135°
3、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是
④四边形AnBnCnDn的面积是
A.①②③B.②③④C.①②D.②③
4、(4分)在平面直角坐标系中,点O为原点,直线y=kx+b交x轴于点A(﹣2,0),交y轴于点B.若△AOB的面积为8,则k的值为( )
A.1B.2C.﹣2或4D.4或﹣4
5、(4分)下列变形正确的是( )
A.B.C.D.
6、(4分)下面几种说法:①对角线互相垂直的四边形是菱形;②一组对边平行,一组邻边相等的四边形是菱形;③对角线相等的平行四边形是矩形;④对角线互相垂直平分的四边形是菱形,那么准确的说法是( )
A.①②③B.②③C.③④D.②④
7、(4分)如图,在ABCD中,∠A=130°,则∠C-∠B的度数为( )
A.90°B.80°C.70°D.60°
8、(4分)如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2,4,6,8,...,顶点依此用A1,A2,A3,表示,则顶点A55的坐标是___.
10、(4分)七边形的内角和是__________.
11、(4分)若关于x的一元二次方程x²-2x+c=0没有实数根.则实数c取值范围是________
12、(4分)如果,那么的值是___________.
13、(4分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=9,则EF的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)为传承中华优秀传统文化,某校团委组织了一次全校名学生参加的“汉字书写”大赛,为了解本次大赛的成绩,校团委随机抽取了其中名学生的成绩(成绩取整数,总分分)作为样本进行统计,制成如下不完整的统计图表:
根据所给信息,解答下列问题:
(1)_____,______;
(2)补全频数直方图;
(3)这名学生成绩的中位数会落在______分数段;
(4)若成绩在分以上(包括分)为“优”等,请你估计该校参加本次比赛的名学生中成绩为“优”等的有多少人。
15、(8分)直线与x轴交于点A,与y轴交于点B,
(1)求点A、B的坐标,画出直线AB;
(2)点C在x轴上,且AC=AB,直接写出点C的坐标.
16、(8分)矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,∠ECA=∠FCA.
(1)求证:四边形AFCE是菱形;
(2)若AB=8,BC=4,求菱形AFCE的面积.
17、(10分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.
(1)求证:BE⊥CF;
(2)若AB=a,CF=b,求BE的长.
18、(10分)图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.
(1)用实线把图①分割成六个全等图形;
(2)用实线把图②分割成四个全等图形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)实数a在数轴上的位置如图示,化简:_____.
20、(4分)当x=______时,分式的值为0.
21、(4分)已知关于x的方程x2+(3﹣2k)x+k2+1=0的两个实数根分别是x1、x2,当|x1|+|x2|=7时,那么k的值是__.
22、(4分)直线的截距是__________.
23、(4分)如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,每个小正方形的边长为1,四边形的每个顶点都在格点上,且,.
(1)请在图中补齐四边形,并求其面积;
(2)判断是直角吗?请说明理由
25、(10分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接 CE、OE,连接AE交OD于点F.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.
26、(12分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
5-2=3,5+2=7,只有4在这两个数之间,故能构成三角形的只有B选项的木棒,故选B.
点睛:本题主要考查三角形三边的关系,能正确地应用“两边之和大于第三边,两边之差小于第三边”是解题的关键.
2、D
【解析】
连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.
【详解】
解:连结PP′,如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∴△ABP绕点B顺时针旋转90°得到△CBP′,
∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
∴△PBP′为等腰直角三角形,
∴∠BPP′=45°,PP′=PB=2,
在△APP′中,∵PA=1,PP′=2,AP′=3,
∴PA2+PP′2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
∴∠BP′C=135°.
故选D.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.
3、C
【解析】
首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
【详解】
①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故①错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故②正确;
③根据中位线的性质易知,A5B5=
∴四边形A5B5C5D5的周长是2×;
故③正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是.
故④正确;
综上所述,②③④正确.
故选C.
考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
4、D
【解析】
令x=0,y=b,∴B(0,b),∴OB=|b|,
∵A(-2,0),∴OA=2,
∴S△AOB=OA·OB=8,即×2×|b|=8,|b|=8,b=±8.
∴B(0,8)或B(0,-8),
①设y=kx+8,将A(-2,0)代入解析式得-2k+8=0,k=4;
②设y=kx-8,将A(-2,0)代入解析式得-2k-8=0,k=-4;
∴k=4或-4.
故选D.
点睛:将点的坐标转化为线段的长度时注意符号问题.
5、C
【解析】
依据分式的基本性质进行判断,即可得到结论.
【详解】
解:A. ,故本选项错误;
B. ,故本选项错误;
C. ,故本选项正确;
D. ,故本选项错误;
故选:C.
本题考查分式的基本性质,分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
6、C
【解析】
根据矩形和菱形的判定定理进行判断.
【详解】
解:对角线互相垂直平分的四边形是菱形,①错误,④正确;
两组对边平行,一组邻边相等的四边形是菱形,②错误;
对角线相等的平行四边形是矩形,③正确;
∴正确的是③④,
故选:C.
本题考查了矩形和菱形的判定,熟练掌握相关判定定理是解题的关键.
7、B
【解析】
根据平行四边形的性质求出∠B和∠C的度数,即可得到结论.
【详解】
解:∵四边形ABCD是平行四边形,AD∥BC,则∠B=180°-∠A=180°-130°=50°.
又∵∠C=∠A=130°,∴故∠C-∠B=130°-50°=80°.
故选B.
本题考查了平行四边形的性质.熟练掌握平行四边形的性质是解答本题的关键.
8、B
【解析】
先证明Rt△BDE≌Rt△BCE(HL),得到点E是DC的中点,进而得出EF是△ADC的中位线,再根据已知数据即可得出EF的长度.
【详解】
解:∵,
∴∠BED=∠BEC
在Rt△BDE与Rt△BCE中
∴Rt△BDE≌Rt△BCE(HL)
∴DE=CE
∴点E是CD的中点,
又∵点F是AC的中点,
∴EF是△ADC的中位线,
∴
∵,,,
∴AD=AB-BC=4
∴EF=2
故答案为:B.
本题考查了全等三角形的证明及中位线的应用,解题的关键是得到EF是△ADC的中位线,并熟知中位线的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(14,14)
【解析】
观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律
【详解】
∵55=413+3,A 与A 在同一象限,即都在第一象限,
根据题中图形中的规律可得
3=40+3,A 的坐标为(0+1,0+1),即A (1,1),
7=41+3,A 的坐标为(1+1,1+1), A (2,2),
11=42+3,A 的坐标为(2+1,2+1), A (3,3);
…
55=413+3,A (14,14),A 的坐标为(13+1, 13+1)
故答案为(14,14)
此题考查点的坐标,解题关键在于发现坐标的规律
10、900°
【解析】
由n边形的内角和是:180°(n−2),将n=7代入即可求得答案.
【详解】
解:七边形的内角和是:180°×(7−2)=900°.
故答案为:900°.
此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n−2)实际此题的关键.
11、
【解析】
利用判别式的意义得到,然后解不等式即可.
【详解】
解:根据题意得:,
解得:,
故答案为:
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
12、
【解析】
由得到再代入所求的代数式进行计算.
【详解】
∵,
∴,
∴,
故答案为:.
此题考查分式的求值计算,根据已知条件求出m与n的等量关系是解题的关键.
13、1
【解析】
利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长
【详解】
解:∵∠AFB=90°,D为AB的中点,
∴DF=AB=1.5,
∵DE为△ABC的中位线,
∴DE=BC=4.5,
∴EF=DE-DF=1,
故答案为:1.
本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
三、解答题(本大题共5个小题,共48分)
14、 (1)70,0.05;(2)见解析;(3)80≤x
相关试卷
这是一份2025届北京市第十四中学数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山西省晋中学市数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京市燕山区九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。