2025届福建省福州市华伦中学数学九上开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=( )
A.60°B.70°C.80°D.90°
2、(4分)如图,在中,D是BC边的中点,AE是的角平分线,于点E,连接DE,若,,则AC的长度是( )
A.5B.4C.3D.2
3、(4分)下列是最简二次根式的是
A.B.C.D.
4、(4分)下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是( )
A.B.
C.D.
5、(4分)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )
A.2~4小时B.4~6小时C.6~8小时D.8~10小时
6、(4分)若,则下列不等式成立的是( )
A.B.C.D.
7、(4分)如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )
A.6B.5C.4D.3
8、(4分)某服装制造厂要在开学前赶制套校服,为了尽快完成任务,厂领导合理调配加强第一线人力,使每天完成的校服比原计划多,结果提前天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服套,则可列出方程( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)因式分解:___.
10、(4分)如果一组数据的方差为,那么这组数据的标准差是________.
11、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是______.
12、(4分)若分式的值为0,则x的值为_________;
13、(4分)已知﹣=16,+=8,则﹣=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1 200元,那每件降价多少元?
15、(8分)如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).
(1)求m的值及一次函数的解析式;
(2)求△ACD的面积.
16、(8分)如图,是矩形的边延长线上的一点,连接,交于,把沿向左平移,使点与点重合,吗?请说明理由.
17、(10分)如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.
求证:△AOE≌△COF.
18、(10分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:
(1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班
(2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若,则____.
20、(4分)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是 .
21、(4分)如图,在菱形中,,,以为边作菱形,且;再以为边作菱形,且;.……;按此规律,菱形的面积为______.
22、(4分)如图,将直线沿轴向下平移后的直线恰好经过点,且与轴交于点,在x轴上存在一点P使得的值最小,则点P的坐标为 .
23、(4分)如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2,则线段BC的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简再求值:()÷,其中x=11﹣.
25、(10分)已知ABC为等边三角形,点D、E分别在直线AB、BC上,且AD=BE.
(1)如图1,若点D、E分别是AB、CB边上的点,连接AE、CD交于点F,过点E作∠AEG=60°,使EG=AE,连接GD,则∠AFD= (填度数);
(2)在(1)的条件下,猜想DG与CE存在什么关系,并证明;
(3)如图2,若点D、E分别是BA、CB延长线上的点,(2)中结论是否仍然成立?请给出判断并证明.
26、(12分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共只,这两种节能灯的进价、售价如下表:
(1)如何进货,进货款恰好为元?
(2)设商场购进甲种节能灯只,求出商场销售完节能灯时总利润与购进甲种节能灯之间的函数关系式;
(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的,此时利润为多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
∵六边形ABCDEF的内角和为:180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,
∴∠GBC+∠C+∠CDG=720°-430°=290°,
∴∠G=360°-(∠GBC+∠C+∠CDG)=70°,
故选B.
2、A
【解析】
延长CE,交AB于点F,通过ASA证明△EAF≌△EAC,根据全等三角形的性质得到AF=AC,EF=EC,根据三角形中位线定理得出BF=1,即可得出结果.
【详解】
解:延长CE,交AB于点F.
∵AE平分∠BAC,AE⊥CE,
∴∠EAF=∠EAC,∠AEF=∠AEC,
在△EAF与△EAC中,
∴△EAF≌△EAC(ASA),
∴AF=AC,EF=EC,
又∵D是BC中点,
∴BD=CD,
∴DE是△BCF的中位线,
∴BF=1DE=1.
∴AC=AF=AB-BF=7-1=5;
故选A.
此题考查的是三角形中位线定理、全等三角形的判定与性质等知识;熟练掌握三角形中位线定理,证明三角形全等是解题的关键.
3、B
【解析】
直接利用二次根式的性质分别化简即可得出答案.
【详解】
A、,故不是最简二次根式,故此选项错误;
B、是最简二次根式,符合题意;
C、,故不是最简二次根式,故此选项错误;
D、,故不是最简二次根式,故此选项错误;
故选:B.
此题主要考查了最简二次根式,正确化简二次根式是解题关键.
4、B
【解析】
A:a>0且-(a-2)>0,即0<a<2,可能;
B:a<0且-(a-2)<0,a无解,不可能;
C:a<0且-(a-2)>0,即a<0,可能;
D:a>0且-(a-2)<0,即a>2,可能;
故选B.
点睛:本题关键在于根据图像判断出参数的范围.
5、B
【解析】
试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.
由条形统计图可得,人数最多的一组是4~6小时,频数为22,
考点:频数(率)分布直方图
6、A
【解析】
根据不等式的基本性质逐一判断即可.
【详解】
A. 将已知不等式的两边同时加上5,得,故本选项符合题意;
B. 将已知不等式的两边同时乘,得,故本选项不符合题意;
C. 将已知不等式的两边同时乘,得,故本选项不符合题意;
D. 不能得出,故本选项不符合题意.
故选A.
此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.
7、C
【解析】
连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.
【详解】
解:连接EG、FG,
EG、FG分别为直角△BCE、直角△BCF的斜边中线,
∵直角三角形斜边中线长等于斜边长的一半
∴EG=FG=BC=×10=5,
∵D为EF中点
∴GD⊥EF,
即∠EDG=90°,
又∵D是EF的中点,
∴,
在中,
,
故选C.
本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.
8、C
【解析】
由实际每天完成的校服比原计划多得到实际每天完成校服x(1+20%)套,再根据提前4天完成任务即可列出方程.
【详解】
∵原来每天完成校服套,实际每天完成的校服比原计划多,
∴实际每天完成校服x(1+20%)套,
由题意得,
故选:C.
此题考查分式方程的实际应用,正确理解题意是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2a(a-2)
【解析】
10、
【解析】
求出9的算术平方根即可.
【详解】
∵S²=9,S==3,
故答案为3
本题考查的是标准差的计算,计算标准差需要先知道方差,标准差即方差的算术平方根.
11、
【解析】
根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CHAF.在Rt△AMF中,根据勾股定理求出AF即可.
【详解】
∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M.连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°.
∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°.
∵H为AF的中点,∴CHAF.在Rt△AMF中,由勾股定理得:AF,∴CH.
故答案为.
本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解答此题的关键是能正确作出辅助线,并求出AF的长和得出CHAF,有一定的难度.
12、3
【解析】
根据分式的值为0,分子为0,分母不为0,可得x-3=0且x+3≠0,即可得x=3.
故答案为:x=3.
13、2
【解析】
根据平方差公式即可得出答案.
【详解】
∵,
∴
故答案为2.
本题考查的是平方差公式,熟知平方差公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、每件童装应降价1元.
【解析】
设每件童装应降价x元,原来平均每天可售出1件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利110元,由此即可列出方程(40-x)(1+2x)=110,解方程就可以求出应降价多少元.
【详解】
如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.
设每件童装应降价x元,
依题意得(40-x)(1+2x)=110,
整理得x2-30x+10=0,
解之得x1=10,x2=1,
因要减少库存,故x=1.
答:每件童装应降价1元.
首先找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.
15、(1)一次函数的解析式为y= x-12(2)36
【解析】
分析:(1)先把点C(4,m)代入y=-3x+6得求得m=-6,然后利用待定系数法确定一次函数的解析式;
(2)先确定直线y=-3x+6与x轴的交点坐标,然后利用S△ACD=S△ABD+S△ABC进行计算.
(1)∵y=-3x+6经过点C(4,m)
∵-3×4+6=m
∴m=-6.
点C的坐标为(4,-6)
又∵y=kx+b过点A(8,0)和C(4,-6),
所以,解得
∴一次函数的解析式为y=x-12;
(2)∵y=-3x+6与y轴交于点D,与x轴交于点B,
∴D点的坐标为(0,6),点B的坐标为(2,0),
过点C作CH⊥AB于H,
又∵点A(8,0),点C(4,-6)
∴AB=8-2=6,OD=6,CH=6,
点睛:本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2,直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点满足两函数的解析式,也考查了待定系数法求一次函数的解析式.
16、见解析
【解析】
根据平移的性质得到∠GCB=∠DAF,然后利用ASA证得两三角形全等即可.
【详解】
解:△ADF≌△CBG;
理由:∵把△ABE沿CB向左平移,使点E与点C重合,
∴∠GCB=∠E,
∵四边形ABCD是矩形,
∴∠E=∠DAF,
∴∠GCB=∠DAF,
在△ADF与△CBG中,
,
∴△ADF≌△CBG(ASA).
本题考查了矩形的性质及全等三角形的判定等知识,解题的关键是了解矩形的性质与平移的性质,难度不大.
17、见详解.
【解析】
根据平行四边形的性质可知:OA=OC,∠AEO=∠OFC,∠EAO=∠OCF,所以△AOE≌△COF
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC
∴∠EAO=∠FCO
又∵∠AOE和∠COF是对顶角,
∴∠AOE=∠COF
∵O是AC的中点,
∴OA=OC
在△AOE和△COF中,
∴△AOE≌△COF
18、(1)89;八(1);(2)八(1)班得分最高.
【解析】
(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作准确的分数最高即可;
(2)利用加权平均数分别计算三个班的得分后即可得解.
【详解】
解:(1)服装统一方面的平均分为:=89分;
动作准确方面最有优势的是八(1)班;
故答案为:89;八(1);
(2)∵八(1)班的平均分为:=84.7分;
八(2)班的平均分为:=82.8分;
八(3)班的平均分为:=83.9分;
∴得分最高的是八(1)班.
本题考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由a+b-1ab=0得a+b.
【详解】
解:由a+b-1ab=0得a+b=1ab,
=1,
故答案为1.
本题考查了分式的化简求值,熟练运用分式的混合运算法则是解题的关键.
20、(0,5)
【解析】
试题分析:先由矩形的性质得到AB=OC=8,BC=OA=10,再根据折叠的性质得AE=AO=10,DE=DO,在Rt△ABE中,利用勾股定理可计算出BE=6,则CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中根据勾股定理有x2=(8﹣x)2+42,解方程求出x,即可确定D点坐标.
解:∵四边形ABCD为矩形,
∴AB=OC=8,BC=OA=10,
∵纸片沿AD翻折,使点O落在BC边上的点E处,
∴AE=AO=10,DE=DO,
在Rt△ABE中,AB=8,AE=10,
∴BE=6,
∴CE=BC﹣BE=4,
设OD=x,则DE=x,DC=8﹣x,
在Rt△CDE中,∵DE2=CD2+CE2,
∴x2=(8﹣x)2+42,
∴x=5,
∴D点坐标为(0,5).
故答案为(0,5).
21、或.
【解析】
根据题意求出每个菱形的边长以及面积,从中找出规律.
【详解】
解:当菱形的边长为a,其中一个内角为120°时,
其菱形面积为:a2,
当AB=1,易求得AC=,此时菱形ABCD的面积为:=×1,
当AC=时,易求得AC1=3,此时菱形面积ACC1D1的面积为:=×()2,
当AC1=3时,易求得AC2=3,此时菱形面积AC1C2D2的面积为: =×()4,
……,
由此规律可知:菱形AC2018C2019D2019的面积为×()2×2019=.,
故答案为:或.
本题考查规律型,解题的关键是正确找出菱形面积之间的规律,本题属于中等题型.
22、(,0)
【解析】
如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,
【详解】
解:设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,
把A(2,﹣4)代入可得,a=﹣2,
∴平移后的直线为y=﹣x﹣2,
令x=0,则y=﹣2,即B(0,﹣2)
∴B'(0,2),
设直线AB'的解析式为y=kx+b,
把A(2,﹣4),B'(0,2)代入可得,,解得,
∴直线AB'的解析式为y=﹣3x+2,
令y=0,则x=,∴P(,0).
23、2
【解析】
过C作CM⊥DE于M,过E作EN⊥BC于N,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠BFE=∠DFC=∠ADE,根据旋转的性质得到∠BFE=∠DFC=∠ADE=60°,推出∠DCM=∠EBN,根据相似三角形的性质得到CM=BN,DM=EN,得到FM=BN,设FM=BN=x,EN=y,则DM=y,CM=x,根据勾股定理即可得到结论.
【详解】
解:过C作CM⊥DE于M,过E作EN⊥BC于N,
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠BFE=∠DFC=∠ADE,
∵将边AD绕点D逆时针旋转60°得到DE,
∴∠BFE=∠DFC=∠ADE=60°,
∴∠FCM=∠FBN=30°,
∵∠DCF+∠BEF=150°,
∴∠DCM+∠BEN=90°,
∵∠BEN+∠EBN=90°,
∴∠DCM=∠EBN,
∴△DCM∽△EBN,
∴==,
∴CM=BN,DM=EN,
在Rt△CMF中,CM=FM,
∴FM=BN,
设FM=BN=x,EN=y,则DM=y,CM=x,
∴CF=2x,EF=y,
∵BC=AD=DE,
∴y+x+y=2x+y+x,
∴x=y,
∵x2+y2=4,
∴y=,x=,
∴BC=2,
故答案为:2.
【点评】
本题考查了平行四边形的性质,相似三角形的判定和性质,勾股定理,旋转的性质,正确的作出辅助线是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、12﹣.
【解析】
先计算括号内分式的减法、除法转化为乘法同时因式分解,再将x的值代入计算可得.
【详解】
原式=,
当x=11﹣时,原式=11﹣ +1=12﹣.
本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.
25、 (1)∠AFD= 60°(2)DG=CE,DG//CE;(3)详见解析
【解析】
(1) 证明△ABE≌△CAD(SAS),可得 ∠BAE=∠ACD,继而根据等边三角形的内角为60度以及三角形外角的性质即可求得答案;
(2)由(1)∠AFD=60°,根据∠AEG=60°,可得GE//CD ,继而根据GE=AE=CD,可得四边形GECD是平行四边形,根据平行四边形的性质即可得DG=CE,DG//CE;
(3)延长EA交CD于点F,先证明△ACD≌△BAE,根据全等三角形的性质可得 ∠ACD=∠BAE, CD=AE,继而根据三角形外角的性质可得到∠EFC= 60°,从而得∠EFC=∠GEF,得到GE//CD,继而证明四边形GECD是平行四边形 ,根据平行四边形的性质即可得到DG=CE,DG//CE.
【详解】
(1) ∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴∠BAE=∠ACD,
∵∠BAE+∠EAC=∠BAC=60°,
∴∠ACD+∠EAC=60°,
∴∠AFD=∠ACD+∠EAC=60°,
故答案为60° ;
(2)DG=CE,DG//CE,理由如下:
∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴AE=CD,∠BAE=∠ACD,
∵∠BAE+∠EAC=∠BAC=60°,
∴∠ACD+∠EAC=60°,
∴∠AFD=∠ACD+∠EAC=60°,
又∵∠AEG=60°,
∴∠AFD=∠AEG,
∴GE//CD ,
∵GE=AE=CD,
∴四边形GECD是平行四边形,
∴DG=CE,DG//CE;
(3)仍然成立
延长EA交CD于点F,
∵△ABC为等边三角形,
∴AC=AB,∠BAC=∠ABC=60°,
∴∠DAC=∠ABE=120°,
在△ACD和△BAE中,
,
∴△ACD≌△BAE(SAS),
∴∠ACD=∠BAE, CD=AE,
∴∠EFC=∠DAF+∠BDC=∠BAE +∠AEB=∠ABC= 60°,
∴∠EFC=∠GEF,
∴GE//CD,
∵GE=AE=CD,
∴四边形GECD是平行四边形 ,
∴DG=CE,DG//CE.
本题考查了等边三角形的性质,平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.注意数形结合思想的运用.
26、(1)乙型节能灯为800; (2); (3)购进乙型节能灯只时的最大利润为元.
【解析】
(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200−x)只,根据两种节能灯的总价为46000元建立方程求出其解即可;
(2)设商场应购进甲开型节能灯x只,根据题意列出函数解析式即可;
(3)根据(2)的结论解答即可.
【详解】
(1)设商场应购进甲型节能灯只,则乙型节能灯为只.
根据题意得,,
解得 ,
所以乙型节能灯为:;
(2)设商场应购进甲型节能灯只,商场销售完这批节能灯可获利元.
根据题意得,
;
(3)商场销售完节能灯时获利最多且不超过进货价的,
,
.
,
随的增大而减小,
时,最大元.
商场购进甲型节能灯只,
购进乙型节能灯只时的最大利润为元.
此题考查一次函数的应用,一元一次不等式的应用,解题关键在于列出方程.
题号
一
二
三
四
五
总分
得分
服装统一
动作整齐
动作准确
八(1)班
80
84
87
八(2)班
97
78
80
八(3)班
90
78
85
进价(元/只)
售价(元/只)
甲型
乙型
2024年福建省福州市台江区福州华伦中学九上数学开学考试模拟试题【含答案】: 这是一份2024年福建省福州市台江区福州华伦中学九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年福建省福州市华伦中学数学九上期末学业水平测试模拟试题含答案: 这是一份2023-2024学年福建省福州市华伦中学数学九上期末学业水平测试模拟试题含答案,共7页。
2023-2024学年福建省福州市台江区福州华伦中学数学九上期末预测试题含答案: 这是一份2023-2024学年福建省福州市台江区福州华伦中学数学九上期末预测试题含答案,共7页。试卷主要包含了如图等内容,欢迎下载使用。