


2025届福建省建瓯市第二中学九上数学开学学业水平测试模拟试题【含答案】
展开
这是一份2025届福建省建瓯市第二中学九上数学开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A.等边三角形B.等腰梯形C.正方形D.平行四边形
2、(4分)如图,是射线上一点,过作轴于点,以为边在其右侧作正方形,过的双曲线交边于点,则的值为
A.B.C.D.1
3、(4分)下列式子从左边到右边的变形是因式分解的是( )
A.B.
C.D.
4、(4分)关于的方程有实数根,则整数的最大值是( )
A.6B.7C.8D.9
5、(4分)将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形( )
A.向左平移2个单位B.向右平移2个单位
C.向上平移2个单位D.向下平移2个单位
6、(4分)在学校举行的“阳光少年,励志青年”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )
A.95B.90C.85D.80
7、(4分)下列曲线中能够表示y是x的函数的有( )
A.①②③B.①②④C.①③④D.②③④
8、(4分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为( )
A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=100
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.
10、(4分)分解因式:2x2﹣8=_____________
11、(4分)如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.
12、(4分)如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.
13、(4分)如图,在中,为边延长线上一点,且,连结、.若的面积为1,则的面积为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC 中,∠B=30°,∠C=45°,AC=2.求 BC 边上的高及△ABC 的面积.
15、(8分)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:
(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;
(2)求在平移过程中线段AB扫过的面积.
16、(8分)如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.
(1)判断四边形ACED的形状,并说明理由;
(2)若BD=8cm,求线段BE的长.
17、(10分)定义:我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:
①如图1,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
②如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(3)问题解决:
如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG,GE,已知AC=2,AB=1.求GE的长度.
18、(10分)某学校要对如图所示的一块地进行绿化,已知,,,,,求这块地的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
20、(4分)如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.
21、(4分)若正比例函数y=kx的图象经过点(1,2),则k=_______.
22、(4分)一次函数与轴的交点是__________.
23、(4分)下面是小明设计的“过三角形的一个顶点作该顶点对边的平行线”的尺规作图过程.
已知:如图1,△ABC.
求作:直线AD,使AD∥BC.
作法:如图2:
①分别以点A、C为圆心,以大于AC为半径作弧,两弧交于点E、F;
②作直线EF,交AC于点O;
③作射线BO,在射线BO上截取OD(B与D不重合),使得OD = OB;
④作直线AD.
∴ 直线AD就是所求作的平行线.
根据小明设计的尺规作图过程,完成下面的证明.
证明:连接CD.
∵OA =OC,OB=OD,
∴四边形ABCD是平行四边形(_______________________)(填推理依据).
∴AD∥BC(__________________________________)(填推理依据).
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,在中,,于点,分别交、于点、点,连接,若.
(1)若,求的面积.
(2)求证:.
25、(10分)如图,是一位护士统计一位病人的体温变化图,请根据统计图回答下列问题:
(1)病人的最高体温是达多少?
(2)什么时间体温升得最快?
(3)如果你是护士,你想对病人说____________________.
26、(12分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.
(1)求这个一次函数的解析式;
(2)求此函数与x轴,y轴围成的三角形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据轴对称图形和中心对称图形的概念,即可求解.
【详解】
解:A、B都只是轴对称图形;
C、既是轴对称图形,又是中心对称图形;
D、只是中心对称图形.
故选:C.
掌握好中心对称图形与轴对称图形的概念是解题的关键.
2、A
【解析】
设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.
【详解】
解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),
把x=m代入,得.
则点A的坐标为:(m,),线段AB的长度为,点D的纵坐标为.
∵点A在反比例函数上,
∴
即反比例函数的解析式为:
∵四边形ABCD为正方形,
∴四边形的边长为.
∴点C、点D、点E的横坐标为:
把x=代入得:.
∴点E的纵坐标为:,
∴CE=,DE=,
∴.
故选择:A.
本题考查了反比例函数和一次函数的结合,解题的关键是找到反比例函数与一次函数的交点坐标,结合正方形性质找到解题的突破口.
3、B
【解析】
根据将多项式化为几个整式的乘积形式即为因式分解进行判断即可.
【详解】
解:A.左边是单项式,不是因式分解,
B.左边是多项式,右边是最简的整式的积的形式,是因式分解;
C.右边不是积的形式,不是因式分解,故错误;
D、右边不是积的形式,不是因式分解,故错误;;
故选:B.
本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.
4、C
【解析】
方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
【详解】
当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整数,即a=1.
故选C.
5、A
【解析】
纵坐标不变则图形不会上下移动,横坐标减2,则说明图形向左移动2个单位.
【详解】
由于图形各顶点的横坐标都减去2,
故图形只向左移动2个单位,
故选A.
本题考查了坐标与图形的变化---平移,要知道,上下移动,横坐标不变,左右移动,纵坐标不变.
6、B
【解析】
解:数据1出现了两次,次数最多,所以这组数据的众数是1.故选B.
7、A
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之相对应,据此即可确定哪一个是函数图象.
【详解】
解:①②③的图象都满足对于x的每一个取值,y都有唯一确定的值与之相对应,故①②③的图象是函数,
④的图象不满足满足对于x的每一个取值,y都有唯一确定的值与之相对应,故D不能表示函数.
故选:A.
主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
8、A
【解析】
利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.
【详解】
由题意知,蔬菜产量的年平均增长率为x,
根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,
2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,
即: 80(1+x)2=100,
故选A.
本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、14或16.
【解析】
求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)若4为腰长,6为底边长,
由于6−4
相关试卷
这是一份2025届北京大兴北臧村中学数学九上开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖南邵阳县九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省厦门市金尚中学数学九上开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。
