搜索
    上传资料 赚现金
    英语朗读宝

    2025届福建省平潭县九年级数学第一学期开学质量跟踪监视试题【含答案】

    2025届福建省平潭县九年级数学第一学期开学质量跟踪监视试题【含答案】第1页
    2025届福建省平潭县九年级数学第一学期开学质量跟踪监视试题【含答案】第2页
    2025届福建省平潭县九年级数学第一学期开学质量跟踪监视试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届福建省平潭县九年级数学第一学期开学质量跟踪监视试题【含答案】

    展开

    这是一份2025届福建省平潭县九年级数学第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)直角三角形两条直角边分别是和,则斜边上的中线等于( )
    A.B.13C.6D.
    2、(4分)下列命题是真命题的是( )
    A.平行四边形的对角线相等
    B.经过旋转,对应线段平行且相等
    C.两组对角分别相等的四边形是平行四边形
    D.两边相等的两个直角三角形全等
    3、(4分)下列各组数中,不是勾股数的是( )
    A.9,12,15B.12,18,22C.8,15,17D.5,12,13
    4、(4分)如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为 ( )
    A.105°B.112.5°C.120°D.135°
    5、(4分)下列计算错误的是
    A.B.
    C.D.
    6、(4分)若关于x的方程 是一元二次方程,则m的取值范围是( )
    A..B..C.D..
    7、(4分)下列根式中,不能与合并的是( )
    A.B.C.D.
    8、(4分)已知一次函数的图象不经过第三象限,则、的符号是( )
    A.,B.,C.,D.,
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算:=________.
    10、(4分)如果三角形三边长分别为,k,,则化简得___________.
    11、(4分)在函数中,自变量的取值范围是__________.
    12、(4分)如图,两张等宽的纸条交叉叠放在一起,若重叠都分构成的四边形ABCD中,AB=3,BD=1.则AC的长为_________________.
    13、(4分)如图是甲、乙两射击运动员的10次射击训练成绩的折射线统计图,则射击成绩较稳定的是__________(填“甲”或“乙”)。

    三、解答题(本大题共5个小题,共48分)
    14、(12分)某公司开发出一款新的节能产品,该产品的成本价为8元/件,该产品在正式投放市场前通过代销点进行了为期一个月30天的试销售,售价为13元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的图象,图中的折线表示日销量(件)与销售时间(天)之间的函数关系.
    (1)直接写出与之间的函数解析式,并写出的取值范围.
    (2)若该节能产品的日销售利润为(元),求与之间的函数解析式.日销售利润不超过1950元的共有多少天?
    (3)若,求第几天的日销售利润最大,最大的日销售利润是多少元?
    15、(8分)已知坐标平面内的三个点、、.
    (1)比较点到轴的距离与点到轴距离的大小;
    (2)平移至,当点和点重合时,求点的坐标;
    (3)平移至,需要至少向下平移超过 单位,并且至少向左平移 个单位,才能使位于第三象限.
    16、(8分)已知1<x<2,,则的值是_____.
    17、(10分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
    (1)求证:△BGF≌△FHC;
    (2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
    18、(10分)如图,菱形对角线交于点,,,与交于点.
    (1)试判断四边形的形状,并说明你的理由;
    (2)若,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.
    20、(4分)要使分式的值为0,则x的值为____________.
    21、(4分)当分式有意义时,x的取值范围是__________.
    22、(4分)如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了_____ cm.
    23、(4分)在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.
    请根据图中信息,解答下列问题:
    (1)a=______%,b=______%,“每天做”对应阴影的圆心角为______°;
    (2)请你补全条形统计图;
    (3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?
    25、(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
    请你根据图中提供的信息,回答下列问题:
    (1)求出扇形统计图中百分数a的值为 ,所抽查的学生人数为 .
    (2)求出平均睡眠时间为8小时的人数,并补全频数直方图.
    (3)求出这部分学生的平均睡眠时间的众数和平均数.
    (4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.
    26、(12分)先化简,再求值:(1﹣),其中m=1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:∵直角三角形两直角边长为5和12,
    ∴斜边==13,
    ∴此直角三角形斜边上的中线等于.
    故选:A.
    此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.
    2、C
    【解析】
    命题的真假,用证明的方法去判断,或者找到反例即可,
    【详解】
    A项平行四边形的对角线相等,这个不一定成立,反例只要不是正方形的菱形的对角线均不相等.
    B项经过旋转,对应线段平行且相等,这个不一定成立,反例旋转九十度,肯定不会平行,C项两组对角分别相等的四边形是平行四边形,这个是成立的,因为对角相等,那么可以得到同位角互补,同位角互补可以得到两组对边平行.
    D项两边相等的两个直角三角形全等,这个没有加对应的这几个字眼,那么就可以找到反例,一个直角三角形的两个直角边与另一个直角三角形的一直角边和斜边相等,那么这两个直角肯定不全等,所以选择C
    本题主要考查基本定义和定理,比如四边形的基本性质,线段平行的关系,直角三角形全等的条件,把握这些定义和定理就没有问题了
    3、B
    【解析】
    欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
    【详解】
    解:、,能构成直角三角形,是正整数,故是勾股数;
    、,不能构成直角三角形,故不是勾股数;
    、,能构成直角三角形,是正整数,故是勾股数;
    、,能构成直角三角形,是正整数,故是勾股数;
    故选:B.
    此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知的三边满足,则是直角三角形.
    4、D
    【解析】
    连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.
    【详解】
    解:连结PP′,如图,
    ∵四边形ABCD为正方形,
    ∴∠ABC=90°,BA=BC,
    ∴△ABP绕点B顺时针旋转90°得到△CBP′,
    ∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
    ∴△PBP′为等腰直角三角形,
    ∴∠BPP′=45°,PP′=PB=2,
    在△APP′中,∵PA=1,PP′=2,AP′=3,
    ∴PA2+PP′2=AP′2,
    ∴△APP′为直角三角形,∠APP′=90°,
    ∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
    ∴∠BP′C=135°.
    故选D.
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.
    5、A
    【解析】
    根据根式的计算法则逐个识别即可.
    【详解】
    A 错误,;
    B. ,正确;
    C. ,正确
    D. ,正确
    故选A.
    本题主要考查根式的计算,特别要注意算术平方根的计算.
    6、A
    【解析】
    根据一元二次方程的定义可得m﹣1≠0,再解即可.
    【详解】
    由题意得:m﹣1≠0,
    解得:m≠1,
    故选A.
    此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
    7、C
    【解析】
    解:A、,本选项不合题意;
    B、,本选项不合题意;
    C、,本选项合题意;
    D、,本选项不合题意;
    故选C.
    考点:同类二次根式.
    8、C
    【解析】
    根据图象在坐标平面内的位置关系确定,的取值范围,从而求解.
    【详解】
    解:函数的图象不经过第三象限,,
    直线与轴正半轴相交或直线过原点,
    时.
    故选:C.
    本题主要考查一次函数图象在坐标平面内的位置与、的关系.
    时,直线必经过一、三象限;时,直线必经过二、四象限;时,直线与轴正半轴相交;时,直线过原点;时,直线与轴负半轴相交.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、 ﹣1
    【解析】
    利用二次根式的性质将二次根式化简得出即可.
    【详解】
    解:=|1-|= ﹣1.
    故答案为: ﹣1.
    本题考查二次根式的化简求值,正确化简二次根式是解题关键.
    10、11-3k.
    【解析】
    求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.
    【详解】
    ∵一个三角形的三边长分别为、k、,
    ∴-<k<+,
    ∴3<k<4,
    =-|2k-5|,
    =6-k-(2k-5),
    =-3k+11,
    =11-3k,
    故答案为:11-3k.
    本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.
    11、x≠2
    【解析】
    根据分式有意义的条件进行求解即可.
    【详解】
    由题意得,2x-4≠0,
    解得:x≠2,
    故答案为:x≠2.
    本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    12、2
    【解析】
    过点D作DE⊥AB于点E,DF⊥BC于点F,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得OB的长,从而可得到BD的长.
    【详解】
    如图,过点D作DE⊥AB于点E,DF⊥BC于点F,连接AC,DB交于点O,
    则DE=DF,
    由题意得:AB∥CD,BC∥AD,
    ∴四边形ABCD是平行四边形
    ∵S▱ABCD=BC•DF=AB•DE.
    又∵DE=DF.
    ∴BC=AB,
    ∴四边形ABCD是菱形;
    ∴OB=OD=2,OA=OC,AC⊥BD.

    ∴AC=2AO=2
    故答案为:2
    本题考查了菱形的判定、解直角三角形以及四边形的面积,证得四边形为菱形是解题的关键.
    13、乙
    【解析】
    从折线图中得出甲乙的射击成绩,再利用方差的公式计算.
    【详解】
    解:由图中知,甲的成绩为8,9,7,8,10,7,9,10,7,10,
    乙的成绩为7,7,8,9,8,9,10,9,9,9,
    =(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
    =(7+7+8+9+8+9+10+9+9+9)÷10=8.5,
    甲的方差S甲2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35
    乙的方差S乙2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,
    ∴S2乙<S2甲.
    故答案为:乙.
    本题考查了方差的定义与意义,熟记方差的计算公式是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2),18;(3)第5日的销售利润最大,最大销售利润为1650元.
    【解析】
    (1)根据题意和函数图象中的数据,可利用待定系数法求得y与x的函数关系式,并写出x的取值范围;
    (2)根据题意和(1)中的函数关系式可以写出w与x的函数关系式,求得日销售利润不超过1950元的天数;
    (3)根据题意和(2)中的关系式分别求出当时和当时的最大利润,问题得解.
    【详解】
    (1)当1≤x≤10时,设y与x的函数关系式为y=kx+b,
    则 ,解得:,
    即当1≤x≤10时,y与x的函数关系式为y=−30x+480,
    当10<x≤30时,设y与x的函数关系式为y=mx+n,
    则 ,解得:
    即当10<x≤30时,y与x的函数关系式为y=21x−30,
    综上可得, ;
    (2)由题意可得:
    令,解得.
    令,解得.
    ∴(天).
    答:日销售利润不超过1950元的共有18天.
    (3)①当时,,∴当时,.
    ②当时,,∴当时,.
    综上所述:当时,.
    即第5日的销售利润最大,最大销售利润为1650元.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.
    15、 (1)点到轴的距离等于点到轴距离; (2);(1)1 ,1
    【解析】
    (1)根据横坐标为点到y轴的距离;纵坐标为点到x轴的距离即可比较大小;
    (2)由点A1和点B重合时,需将△ABC向右移2个单位,向下移2个单位,据此求解可得;
    (1)根据点A的纵坐标得出向下平移的距离,由点B的横坐标得出向左平移的距离.
    【详解】
    解:(1)∵,
    ∴点到轴的距离为1
    ∵,点到轴距离为1
    ∴点到轴的距离等于点到轴距离
    (2)点和点重合时,需将向右移2个单位,向下移2个单位,
    ∴点的对应点的坐标是
    (1)平移△ABO至△A2B2O2,需要至少向下平移超过1单位,并且至少向左平移1个单位,才能△A2B2O2使位于第三象限.
    故答案为:1,1.
    本题主要考查点的意义与图形的变换-平移,注意:点到x轴的距离等于该点纵坐标的绝对值;点到y轴的距离等于该点横坐标的绝对值;平面直角坐标系中点的坐标的平移规律.
    16、2.
    【解析】
    变形后即可求出()2+()2=6,再根据完全平方公式求出即可.
    【详解】
    解:∵

    即()2+()2=6,
    ∵1<x<2,
    ∴ > ,

    =
    =
    =
    =2.
    故答案为:2.
    本题考查二次根式的混合运算和求值,完全平方公式等知识点,能灵活运用公式进行计算是解题关键.
    17、见解析(2)
    【解析】
    (1)根据三角形中位线定理和全等三角形的判定证明即可;
    (2)利用正方形的性质和矩形的面积公式解答即可.
    【详解】
    (1)连接EF,∵点F,G,H分别是BC,BE,CE的中点,
    ∴FH∥BE,FH=BE,FH=BG,
    ∴∠CFH=∠CBG,
    ∵BF=CF,
    ∴△BGF≌△FHC,
    (2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,
    ∵在△BEC中,点G,H分别是BE,CE的中点,
    ∴ 且GH∥BC,
    ∴EF⊥BC,
    ∵AD∥BC,AB⊥BC,
    ∴AB=EF=GH=a,
    ∴矩形ABCD的面积=
    此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.
    18、(1)四边形是矩形,理由见解析;(2).
    【解析】
    (1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;
    (2)依据矩形的性质可得到OE=AB,然后依据菱形的性质可得到AB=CD,即可求出的长.
    【详解】
    解:(1)四边形是矩形
    理由如下:∵,,
    ∴四边形是平行四边形
    又∵菱形对角线交于点,∴,即
    ∴四边形是矩形
    (2)∵四边形是矩形,

    在菱形中,
    ∴.
    本题主要考查的是菱形的性质判定、矩形的性质和判定,求出四边形是矩形是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4.
    【解析】
    先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.
    【详解】
    解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,
    ∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,
    ∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,
    ∴四边形EFGH是矩形,
    边接AC,则AC=BD=4,
    又∵EH是△ABD的中位线,
    ∴EH=BD=2,
    同理EF=AC=2,
    ∴四边形EFGH的面积为2×2=4.
    故答案为4.
    本题考查了正方形的性质,矩形的判定,三角形中位线定理.
    20、-2.
    【解析】
    分式的值为零的条件是分子等于0且分母不等于0,
    【详解】
    因为分式的值为0,
    所以x+2=0且x-1≠0,
    则x=-2,
    故答案为-2.
    21、
    【解析】
    分式有意义的条件为,即可求得x的范围.
    【详解】
    根据题意得:,
    解得:.
    答案为:
    本题考查了分式有意义的条件,熟练掌握分母不为0是解题的关键.
    22、2.
    【解析】
    根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.
    【详解】
    Rt△ACD中,AC=AB=4cm,CD=3cm;
    根据勾股定理,得:AD==5cm;
    ∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;
    故橡皮筋被拉长了2cm.
    故答案为2.
    此题主要考查了等腰三角形的性质以及勾股定理的应用.
    23、丙
    【解析】
    方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    因为=0.56,=0.60,=0.45,=0.50,
    所以

    相关试卷

    2025届福建省宁化城东中学数学九年级第一学期开学质量跟踪监视试题【含答案】:

    这是一份2025届福建省宁化城东中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届福建省龙岩市(五县)九年级数学第一学期开学质量跟踪监视试题【含答案】:

    这是一份2025届福建省龙岩市(五县)九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届福建省福州市金山中学数学九年级第一学期开学质量跟踪监视试题【含答案】:

    这是一份2025届福建省福州市金山中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map