2025届福建省莆田涵江区四校联考数学九上开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为( )
A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
2、(4分)如图,在中,,,分别为,,边的中点,于,,则等于( )
A.32B.16C.8D.10
3、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是( )
A.452名学生B.抽取的50名学生
C.452名学生的课外阅读情况D.抽取的50名学生的课外阅读情况
4、(4分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是( )
A.B.C.D.
5、(4分)如图,在正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是( )
A.135°B.120°C.1.5°D.2.5°
6、(4分)如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是( )
A.B.C.D.
7、(4分)下列图形是中心对称图形的是( )
A.B.C.D.
8、(4分)在20km的环湖越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如右上图所示,根据图中提供的信息,下列说法中错误的有( )
①出发后1小时,两人行程均为10km; ②出发后1.5小时,甲的行程比乙多2km;
③两人相遇前,甲的速度小于乙的速度; ④甲比乙先到达终点.
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在□ABCD中,∠A+∠C=80°,则∠B的度数等于_____________.
10、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
11、(4分)如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.
12、(4分)如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.
13、(4分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读:所谓勾股数就是满足方程的正整数解,即满足勾股定理的三个正整数构成的一组数我国古代数学专著九章算术一书,在世界上第一次给出该方程的解为:,,,其中,m,n是互质的奇数.应用:当时,求一边长为8的直角三角形另两边的长.
15、(8分)某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出消费金额的中位数;
(3)该班这一天平均每人消费多少元?
16、(8分)化简求值:,其中.
17、(10分)先化简:,并从中选取合适的整数代入求值.
18、(10分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知锐角,且sin=cs35°,则=______度.
20、(4分)等腰三角形一腰上的高与另一腰的夹角是40°,则该等腰三角形顶角为_____°.
21、(4分)如图,点P是边长为5的正方形ABCD内一点,且PB=2,PB⊥BF,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与ABP相似,则BM=_____.
22、(4分)矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)
23、(4分)如图,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8,点M,P,N分别是边AB,BC,AC上任意一点,则:
(1)AB的长为____________.
(2)PM+PN的最小值为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)高铁的开通给滕州人民出行带来极大的方便,从滕州到北京相距,现在乘高铁列车比以前乘特快列车少用,已知高铁列车的平均速度是特快列车的2.8倍,求高铁列车的平均行驶速度.
25、(10分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)
26、(12分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AB=AE,
当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.
∴矩形ABCD的面积是:1×5=10cm1;
当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,
∴矩形ABCD的面积是:5×3=15cm1.
故矩形的面积是:10cm1或15cm1.
故选:D.
本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.
2、B
【解析】
利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.
【详解】
解:∵D、F分别是AB、BC的中点,
∴DF是△ABC的中位线,
∴DF=AC(三角形中位线定理);
又∵E是线段AC的中点,AH⊥BC,
∴EH=AC,
∴EH=DF=1.
故选B.
本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.
3、D
【解析】
根据样本是总体中所抽取的一部分个体,可得答案.
【详解】
解:为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计,在这个问题中,样本是从中抽取的50名学生的课外阅读情况.
故选:D.
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4、B
【解析】
若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.
【详解】
A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;
B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;
C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;
D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.
故选B.
本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
5、C
【解析】
因为正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,
所以∠DBC=∠BDC=45°,∠DBF=∠FBE=6.5°,
所以∠BPD=∠PBC+∠BCP=90°+6.5°=4.5°.
所以∠FPC=∠BPD=4.5°.
故选C
考点:4.正方形的性质;5.菱形的性质;6.三角形外角的性质.
6、B
【解析】
对于已知直线,分别令x与y为0求出对应y与x的值,确定出A与B的坐标,在x轴上取一点B′,使AB=AB′,连接MB′,由AM为∠BAO的平分线,得到∠BAM=∠B′AM,利用SAS得出两三角形全等,利用全等三角形的对应边相等得到BM=B′M,设BM=B′M=x,可得出OM=8-x,在Rt△B′OM中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出M坐标,设直线AM解析式为y=kx+b,将A与M坐标代入求出k与b的值,即可确定出直线AM解析式.
【详解】
对于直线,
令x=0,求出y=8;令y=0求出x=6,
∴A(6,0),B(0,8),即OA=6,OB=8,
根据勾股定理得:AB=10,
在x轴上取一点B′,使AB=AB′,连接MB′,
∵AM为∠BAO的平分线,
∴∠BAM=∠B′AM,
∵在△ABM和△AB′M中,
,
∴△ABM≌△AB′M(SAS),
∴BM=B′M,
设BM=B′M=x,则OM=OB﹣BM=8﹣x,
在Rt△B′OM中,B′O=AB′﹣OA=10﹣6=4,
根据勾股定理得:x2=42+(8﹣x)2,
解得:x=5,
∴OM=1,即M(0,1),
设直线AM解析式为y=kx+b,
将A与M坐标代入得:,
解得:,
则直线AM解析式为y=﹣x+1.
故选B.
此题考查了一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,一次函数与坐标轴的交点,勾股定理,全等三角形的判定与性质,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.
7、B
【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
【详解】
请在此输入详解!
8、B
【解析】
根据图像所给信息,结合函数图像的实际意义判断即可.
【详解】
解:由图像可得出发后1小时,两人行程均为10km,①正确;甲的速度始终为,乙在内,速度为,在内,速度为,所以出发后1.5小时,甲的行程为,而乙的行程为,,所以出发后1.5小时,甲的行程比乙多3km,②错误;相遇前,在内,乙的速度大于甲的速度,在内,乙的速度小于甲的速度,③ 错误;由图像知,甲2小时后到达终点,而乙到达终点花费的时间比甲的长,所以甲比乙先到达终点,④正确.错误的说法有2个.
故答案为:B
本题是根据函数图像获取信息,明确函数图像所表达的实际意义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、140°
【解析】
根据平行四边形的性质可得∠A的度数,再利用平行线的性质解答即可.
【详解】
解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,
∵∠A+∠C=80°,∴∠A=40°,
∵AD∥BC,∴∠A+∠B=180°,∴∠B=140°.
故答案为:140°.
本题主要考查了平行四边形的性质和平行线的性质,属于应知应会题型,熟练掌握平行四边形的性质是解题关键.
10、3;
【解析】
根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.
【详解】
根据矩形的性质得△OBF≌△ODE,
属于图中阴影部分的面积就是△ADC的面积.
S△ADC=CD×AD=×2×3=3.
故图中阴影部分的面积是3.
本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.
11、1
【解析】
根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.
【详解】
面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.
故答案为:1.
本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.
12、
【解析】
设DP=x,根据,列出方程即可解决问题.
【详解】
解:设DP=x
∵, AD=BC=6,AB=CD=8,
又∵点为中点
∴BQ=CQ=3,
∴18=48− ⋅x⋅6− (8−x)⋅3−⋅8⋅3,
∴x=4,
∴DP=4
故答案为4cm
本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.
13、.
【解析】
解:如图3所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,
∵AD=A′D=3,BE=BE′=3,
∴AA′=6,AE′=3.
∵DQ∥AE′,D是AA′的中点,
∴DQ是△AA′E′的中位线,
∴DQ=AE′=3;CQ=DC﹣CQ=3﹣3=3,
∵BP∥AA′,
∴△BE′P∽△AE′A′,
∴,即,BP=,CP=BC﹣BP==,
S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×3﹣×3×﹣×3×=,
故答案为.
本题考查3.轴对称-最短路线问题;3.正方形的性质.
三、解答题(本大题共5个小题,共48分)
14、当时,一边长为8的直角三角形另两边的长分别为15,1.
【解析】
分情况讨论:当 时,利用计算出m,然后分别计算出y和z;当时,利用,解得,不合题意舍去;当时,利用求出,不合题意舍去,从而得到当时,一边长为8的直角三角形另两边的长.
【详解】
分三种情况:
当 时,
,
解得,舍去,
,
;
当时,
,解得
而m为奇数,所以舍去;
当时,
,解得,而m为奇数
舍去,
综上所述,当时,一边长为8的直角三角形另两边的长分别为15,1.
考查了勾股数:满足的三个正整数,称为勾股数记住常用的勾股数再做题可以提高速度.
15、(1)50;(2)图详见解析,12.5;(3)该班这一天平均每人消费13.1元.
【解析】
(1)根据C类有14人,占28%,即可求得该班的总人数;(2)根据(1)中的答案可以求得消费10元的人数,从而可以将条形统计图补充完整,进而求得消费金额的中位数;(3)根据加权平均数的计算方法可以求得该班这一天平均每人消费的金额.
【详解】
(1)由题意可得,
该班的总人数为:14÷28%=50,
即该班的总人数是50;
(2)消费10元的有:50-9-14-7-4=16(人),
补充完整的统计图如图所示,
消费金额的中位数是:=12.5;
(3)由题意可得,
该班这一天平均每人消费:=13.1(元),
即该班这一天平均每人消费13.1元.
本题考查条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、
【解析】
直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.
【详解】
解:
当时:原式.
此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.
17、;当时,原式=1;当时,原式=1
【解析】
将原式化简成,由、、可得出或,将其代入即可得解.
【详解】
解:
∵分式有意义
∴、、
∵
∴或
∴当时,原式;
当时,原式.
故答案是:;当时,原式;当时,原式
本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解,除法转化成乘法;选取代入求值的数要使分式有意义才符合条件.
18、57+12﹣
【解析】
试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.
试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)
=(12+12+45)﹣(6﹣2+2﹣5)
=(57+12﹣)(cm2).
考点:二次根式的应用
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
对于任意锐角A,有sinA=cs(90°-A),可得结论.
【详解】
解:∵sinα=cs35°,
∴α=90°-35°=1°,
故答案为:1.
此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.
20、50°或130°
【解析】
首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.
【详解】
解:①当为锐角三角形时可以画出图①,
高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;
②当为钝角三角形时可画图为图②,
此时垂足落到三角形外面,因为三角形内角和为180°,
由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°;
故填50°或130°.
本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.
21、2或
【解析】
先利用等角的余角相等得到∠ABP=∠CBM,利用相似三角形的判定方法得到当时,△BAP∽△BCM,即;当时,△BAP∽△BMC,即,然后分别利用比例的性质求BM的长即可.
【详解】
如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∵PB⊥BF,
∴∠PBM=90°,
∵∠ABP+∠CBP=90°,∠CBP+∠CBM=90°,
∴∠ABP=∠CBM,
∴当时,△BAP∽△BCM,即,解得BM=2;
当时,△BAP∽△BMC,即,解得BM=,
综上所述,当BM为2或 时,以B,M,C为顶点的三角形与△ABP相似.
故答案为2或.
此题主要考查的是相似三角形的判定和性质,应注意相似三角形的对应顶点不明确时,要分类讨论,不要漏解.
22、正方
【解析】
此类题根据矩形性质,三角形内角和定理及角平分线定义得到所求的四边形的各个角为90°,进而求解.
【详解】
∵AF,BE是矩形的内角平分线.
∴∠ABF=∠BAF-90°.
故∠1=∠2=90°.
同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.
又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,
∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.
∴OD=OC,△AMD≌△BNC,
∴NC=DM,
∴NC-OC=DM-OD,
即OM=ON,
∴矩形GMON为正方形,
故答案为正方.
本题考查的是矩形性质,角平分线定义,联系三角形内角和的知识可求解.
23、4; 2.
【解析】
过点A作,垂足为G,依据等腰三角形的性质可得到,设,则,,然后依据三角形的面积公式列方程求解即可;
作点A关于BC的对称点,取,则,过点作,垂足为D,当、P、M在一条直线上且时,有最小值,其最小值.
【详解】
(1)如图所示:过点A作AG⊥BC,垂足为G,
∵AB=AC,∠BAC=120°,∴∠ABC=30°,
设AB=x,则AG,BGx,则BCx,
∴BC•AG•x•x=8,解得:x=4,∴AB的长为4,
故答案为:4;
(2)如图所示:作点A关于BC的对称点A',取CN=CN',则PN=PN',过点A'作A'D⊥AB,垂足为D,
当N'、P、M在一条直线上且MN'⊥AB时,PN+PM有最小值,
最小值=MN'=DA'AB=2,
故答案为:2.
本题考查了翻折的性质、轴对称最短路径、垂线段的性质,将的长度转化为的长度是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、高铁列车平均速度为.
【解析】
设特快列车平均速度为,则高铁列车平均速度为,根据现在乘高铁列车比以前乘特快列车少用 列方程求解即可.
【详解】
设特快列车平均速度为,则高铁列车平均速度为,
由题意得:,
解得:,
经检验:是原方程的解,
则;
答:高铁列车平均速度为.
本题是分式方程的应用,属于行程问题;两类车:高铁和特快,路程都是,高铁列车的平均速度是特快列车的倍,时间相差,根据速度的关系设未知数,根据时间的关系列方程,注意分式方程要检验.
25、见解析
【解析】
根据勾股定理逆定理,结合网格结构,作出一个直角边分别为2,4的直角三角形或者作出一个直角边都为的直角三角形即可
【详解】
考查勾股定理,在直角三角形中,两条直角边的平方和等于斜边的平方.
26、(1)111,51;(2)11.
【解析】
(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;
(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.
【详解】
解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:
解得:x=51,
经检验x=51是原方程的解,
则甲工程队每天能完成绿化的面积是51×2=111(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;
(2)设应安排甲队工作y天,根据题意得:
1.4y+×1.25≤8,
解得:y≥11,
答:至少应安排甲队工作11天.
题号
一
二
三
四
五
总分
得分
批阅人
2025届福建省莆田荔城区五校联考九上数学开学调研模拟试题【含答案】: 这是一份2025届福建省莆田荔城区五校联考九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省莆田市涵江区九上数学开学经典试题【含答案】: 这是一份2024年福建省莆田市涵江区九上数学开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省莆田涵江区四校联考2023-2024学年九年级数学第一学期期末考试模拟试题含答案: 这是一份福建省莆田涵江区四校联考2023-2024学年九年级数学第一学期期末考试模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。