2025届福建省莆田砺志国际学校九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数y=中,自变量x的取值范围是( )
A.x≥1B.x>1C.x≥1且x≠2D.x≠2
2、(4分)若一个函数中,随的增大而增大,且,则它的图象大致是( )
A.B.
C.D.
3、(4分)在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有( )
①AC=5 ②∠A+∠C=180° ③AC⊥BD ④AC=BD
A.①②④B.①②③C.②③④D.①③④
4、(4分)化简的结果是( )
A.2B.C.4D.16
5、(4分)如图,已知点A(0,9),点B是x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC使点C在第一象限,∠BAC=90°.设点B的横坐标为x,点C的纵坐标为y则表示y与x的函数关系的图象大致是( )
A.B.
C.D.
6、(4分)如图所示,DE是△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为( )
A.B.4C.D.1
7、(4分)如图,将点P(-1,3)向右平移n个单位后落在直线y=2x-1上的点P′处,则n等于( )
A.2B.C.3D.4
8、(4分)关于的一元二次方程有两个相等的实数根,则的值( )
A.2B.3C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在反比例函数的图像上有点它们的横坐标依次为1,2,3,……,n,n+1,分别过点作x轴,y轴的垂线,图中所构成的阴影部分面积从左到右依次为,则Sn=__________。(用含n的代数式表示)
10、(4分)若分式方程 无解,则等于___________
11、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.
12、(4分)如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.
13、(4分)如图,正方形的边长为12,点、分别在、上,若,且,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分)把直线向上平移m个单位后,与直线的交点为点P.
(1)求点P坐标用含m的代数式表示
(2)若点P在第一象限,求m的取值范围.
15、(8分)我们将、称为一对“对偶式”,因为,所以构造“对偶式”再将其相乘可以有效的将和中的“”去掉.于是二次根式除法可以这样解:如,.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答以下问题:
(1)比较大小________(用“”、“”或“”填空);
(2)已知,,求的值;
(3)计算:
16、(8分)先化简,再求值:.其中a=3+.
17、(10分)已知x=﹣1,y=+1,求x2+xy+y2的值.
18、(10分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.
(1)求这个反比例函数的表达式;
(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?
(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果的平方根是,则_________
20、(4分)在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:
请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)
21、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.
22、(4分)如果关于的一次函数的图像不经过第三象限,那么的取值范围________.
23、(4分)如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明ABCD是矩形的有______________(填写序号)
二、解答题(本大题共3个小题,共30分)
24、(8分)下表是厦门市某品牌专卖店全体员工9月8日的销售量统计资料.
(1)写出该专卖店全体员工9月8日销售量的众数;
(2)求该专卖店全体员工9月8日的平均销售量.
25、(10分)问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数y=|x|﹣2中,自变量x可以是任意实数;
Ⅰ如表是y与x的几组对应值.
①m= ;
②若A(n,8),B(10,8)为该函数图象上不同的两点,则n= ;
Ⅱ如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:
①该函数的最小值为 ;
②该函数的另一条性质是 .
26、(12分)解方程:(1)x2+2x=0 (2)x2-4x-7=0.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:依题意得:x﹣1≥0且x﹣1≠0,
解得x≥1且x≠1.
故选C.
考点:函数自变量的取值范围.
2、B
【解析】
根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像.
【详解】
根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像为B
故选B
本题主要考查了一次函数的图像,以及和对图像的影响,掌握一次函数的图像和性质是解题的关键.
3、A
【解析】
当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.
【详解】
根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,
∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,
∴∠BAD+∠BCD=180° ,AC==5,
①正确,②正确,④正确;③不正确;
故选A.
本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.
4、A
【解析】
根据算术平方根的定义计算即可.
【详解】
∵11=4,
∴4的算术平方根是1,即=1.
故选:A.
本题考查算术平方根的概念:一般地,如果一个正数x的平方等于a,即x1=a,那么这个正数x叫做a的算术平方根.记为.
5、A
【解析】
过点C作CD⊥y轴于点D,证明△CDA≌△AOB(AAS),则AD=OB=x,y=OA+AD=9+x,即可求解.
【详解】
解:过点C作CD⊥y轴于点D,
∵∠OAB+∠OBA=90°,∠OAB+∠CAD=90°,
∴∠CAD=∠ABO,
∵∠CDA=∠AOB=90°,AB=AC,
∴△CDA≌△AOB(AAS),
∴AD=OB=x,
y=OA+AD=9+x,
故选:A.
本题主要考查全等三角形的性质及一次函数的图象,掌握一次函数的图象及全等三角形的性质是解题的关键
6、A
【解析】
根据DE为△ABC的中位线可得DE=BC=4,再根据∠AFB=90°,即可得到DF=AB=,从而求得EF=DE-DF=.
故选A.
点睛:此题主要考查了三角形的中位线,解答本题的关键是熟练掌握三角形的中位线平行于第三边,且等于第三边的一半;直角三角形斜边上的中线等于斜边的一半.
7、C
【解析】
点向右平移得到,根据平移性质可设(),代入中可求出,则.
【详解】
∵点向右平移得到,
∴设(),代入,解得,
则 ,故答案选C.
本题考查了坐标系中函数图像平移的性质,以及利用函数解析式求点坐标,熟练掌握这些知识点是解题关键.
8、A
【解析】
由方程有两个相等的实数根,可得出关于m的一元一次方程,解之即可得出结论.
【详解】
∵方程有两个相等的实数根,
∴,
解得:m=1.
故选:A.
本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由题意可知,每个小矩形的宽度为1,第个小矩形的长为 ,故将 代入,可求。
【详解】
解:依题意得
故答案为:
掌握反比例函数与面积的关系是解题的关键。
10、
【解析】
先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.
【详解】
解:,
去分母得:,
所以:,
因为:方程的增根是,
所以:此时,
故答案为:.
本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.
11、乙
【解析】
根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.
【详解】
解:∵0.5>0.4
∴S甲2>S乙2,则成绩较稳定的同学是乙.
故答案为:乙.
此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.
12、2.1
【解析】
连接,利用勾股定理列式求出,判断出四边形是矩形,根据矩形的对角线相等可得,再根据垂线段最短可得时,线段的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接.
,,,
,
,,,
四边形是矩形,
,
由垂线段最短可得时,线段的值最小,
此时,,
即,
解得.
故答案为:2.1.
本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出时,线段的值最小是解题的关键,难点在于利用三角形的面积列出方程.
13、
【解析】
首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易证△GCF≌△ECF,利用勾股定理可得DF,求出AF,设BE=x,利用GF=EF,解得x,再利用勾股定理可得CE.
【详解】
解:如图,延长FD到G,使DG=BE;
连接CG、EF;
∵四边形ABCD为正方形,
在△BCE与△DCG中,,
∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,
∴∠GCF=45°,
在△GCF与△ECF中,,
∴△GCF≌△ECF(SAS),
∴GF=EF,
∵DF=,AB=AD=12,
∴AF=12−4=8,
设BE=x,则AE=12−x,EF=GF=4+x,
在Rt△AEF中,由勾股定理得:(12−x)2+82=(4+x)2,
解得:x=6,
∴BE=6,
∴CE=,
故答案为.
本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)m>1.
【解析】
根据“上加下减”的平移规律求出直线向上平移m个单位后的解析式,再与直线联立,得到方程组,求出方程组的解即可得到交点P的坐标;
根据第一象限内点的坐标特征列出不等式组,求解即可得出m的取值范围.
【详解】
解:直线向上平移m个单位后可得:,
联立两直线解析式得:,
解得:,
即交点P的坐标为;
点P在第一象限,
,
解得:.
考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横坐标大于1、纵坐标大于1.
15、(1);(2);(3)
【解析】
(1)先利用分母有理化的方法化简,再比较分子即可;
(2)利用x2+y2=(x+y)2﹣2xy变形计算较为简单;
(3)先把各个式子进行分母有理化,再裂项相消即可.
【详解】
(1)∵=
;
比较与
∵>,2>,
∴+2>+,
∴〉.
(2)∵x2+y2=(x+y)2﹣2xy
=( )2﹣2
=182﹣2
=324﹣2
=1
答:x2+y2的值为1.
(3)
==1﹣+﹣+﹣+…+﹣
=1﹣
=
考查二次根式的化简求值,同时考查了完全平方公式的变形应用以及裂项法的应用,计算量较大.
16、a﹣3,
【解析】
根据题意对原式利用乘法分配律计算得到最简结果,把a的值代入计算即可求出值.
【详解】
解:
=﹣•
=2(a﹣1)﹣(a+1)
=2a﹣2﹣a﹣1
=a﹣3,
当a=3+时,原式=3+﹣3=.
本题考查分式的化简求值,熟练掌握分式混合运算法则是解答本题的关键.
17、1
【解析】
根据x、y的值,可以求得题目中所求式子的值.
【详解】
解:∵x=﹣1,y=+1,
∴x+y=2,xy=2,
∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣2=12﹣2=1.
本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
18、(1);(2) 80吨货物;(3)6名.
【解析】
(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;
(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;
(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.
【详解】
解:(1)设y与x之间的函数表达式为y=,
根据题意得:50=,
解得k=400,
∴y与x之间的函数表达式为y=;
(2)∵x=5,
∴y=400÷5=80,
解得:y=80;
答:平均每天至少要卸80吨货物;
(3)∵每人一天可卸货:50÷10=5(吨),
∴80÷5=16(人),16﹣10=6(人).
答:码头至少需要再增加6名工人才能按时完成任务.
本题考查了反比例函数的应用,解题的关键是熟练的掌握反比例函数的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、81
【解析】
根据平方根的定义即可求解.
【详解】
∵9的平方根为,
∴=9,
所以a=81
此题主要考查平方根的性质,解题的关键是熟知平方根的定义.
20、0.60
【解析】
计算出平均值即可解答
【详解】
解:由表可知,当n很大时,摸到白球的频率将会接近0.60;
故答案为:0.60;
此题考查利用频率估计概率,解题关键在于求出平均值
21、(0,7)或(0,-7)
【解析】
点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).
【详解】
∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7
∴点P的坐标为(0,7)或(0,-7).
此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.
22、
【解析】
由一次函数的图象不经过第三象限,则,并且,解两个不等式即可得到m的取值范围.
【详解】
解:∵一次函数的图像不经过第三象限,
∴,,
解得:,
故答案为.
本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
23、①④
【解析】
矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.
二、解答题(本大题共3个小题,共30分)
24、(1)该专卖店全体员工9月8日销售量的众数是件;(2)该专卖店全体员工9月8日的平均销售量是件.
【解析】
(1)由题意直接根据众数的定义进行分析求解可得;
(2)由题意直接根据加权平均数的定义列式并进行计算可得.
【详解】
解:(1) 该专卖店全体员工9月8日销售量的众数是件.
答:该专卖店全体员工9月8日销售量的众数是件.
(2)(件)
答:该专卖店全体员工9月8日的平均销售量是件.
本题主要考查众数和加权平均数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
25、Ⅰ①1②-2;Ⅱ①-2②当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小
【解析】
Ⅰ①把x=3代入y=|x|﹣2,即可求出m;
②把y=8代入y=|x|﹣2,即可求出n;
Ⅱ①画出该函数的图象即可求解;
②根据图象可得增减性.
【详解】
解:Ⅰ①把x=3代入y=|x|﹣2,得m=3﹣2=1.
故答案为1;
②把y=8代入y=|x|﹣2,得8=|x|﹣2,
解得x=﹣2或2,
∵A(n,8),B(2,8)为该函数图象上不同的两点,
∴n=﹣2.
故答案为﹣2;
Ⅱ该函数的图象如图所示,
①该函数的最小值为﹣2;
故答案为﹣2;
②当x>0时,y随x的增大而增大,
当x<0时,y随x的增大而减小.
故答案为:当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小.
本题考查了描点法画函数的图象,从函数图形获取信息,利用了数形结合思想.正确画出函数的图象是解题的关键.
26、(1)与;(2)与
【解析】
(1)运用因式分解法解方程即可;
(2)利用公式法解方程即可.
【详解】
解:(1)x(x+2)=0
∴,
(2)a=1,b=-4,c=-7
∴Δ=b2-4ac=44
∴
∴,
本题考查了一元二次方程的解法,根据方程的特征选择合适的解法可以事半功倍.
题号
一
二
三
四
五
总分
得分
批阅人
摸球的次数n
100
200
300
500
800
1 000
3 000
摸到白球的次数m
65
124
178
302
481
620
1845
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.620
0.615
销售量/件
7
8
10
11
15
人数
1
3
3
4
1
y
…
﹣3
﹣2
﹣1
0
1
2
3
…
x
…
1
0
﹣1
﹣2
﹣1
0
m
…
福建省莆田砺志学校2023-2024学年九年级上学期期末数学试题: 这是一份福建省莆田砺志学校2023-2024学年九年级上学期期末数学试题,共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年福建省莆田砺志国际学校九上数学期末监测试题含答案: 这是一份2023-2024学年福建省莆田砺志国际学校九上数学期末监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,对于二次函数y=2等内容,欢迎下载使用。
福建省莆田砺志国际学校2023-2024学年数学八年级第一学期期末综合测试试题含答案: 这是一份福建省莆田砺志国际学校2023-2024学年数学八年级第一学期期末综合测试试题含答案,共7页。试卷主要包含了如图,已知,若且,则函数的图象可能是等内容,欢迎下载使用。