2025届福建省厦门市数学九年级第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,,的平分线与DC交于点E,,BF与AD的延长线交于点F,则BC等于
A.2B.C.3D.
2、(4分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
3、(4分)用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是( )
A.(x+2)2=2B.(x﹣2)2=﹣2C.(x﹣2)2=2D.(x﹣2)2=6
4、(4分)已知菱形的边长和一条对角线的长均为2 cm,则菱形的面积为( )
A.3cm2B.4 cm2C.cm2D.2cm2
5、(4分)据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)( )
A.21℃B.22℃C.23℃D.24℃
6、(4分)计算(2+)(﹣2)的结果是( )
A.1B.0C.﹣1D.﹣7
7、(4分)如图,在中,,,分别为,,边的中点,于,,则等于( )
A.32B.16C.8D.10
8、(4分)的倒数是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)抛物线有最_______点.
10、(4分)如图,在的两边上分别截取、,使,分别以点、为圆心,长为半径作弧,两弧交于点;连接、、、.若,四边形的周长为,则的长为___________.
11、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
12、(4分)若二次根式有意义,则x的取值范围是___.
13、(4分)在矩形ABCD中,再增加条件_____(只需填一个)可使矩形ABCD成为正方形.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.
(1)请补全下表:
(2)填空:
由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出.
(3) 两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
15、(8分)已知一次函数y=(m+2)x+3- m,
(1)m为何值时,函数的图象经过坐标原点?
(2)若函数图象经过第一、二、三象限,求m的取值范围.
16、(8分)解分式方程或化简求值
(1) ;
(2)先化简,再求值:,其中.
17、(10分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.
(1)求销售量y与定价x之间的函数关系式;
(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.
18、(10分)如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.
(1)求证:△CEF≌△AEF;
(2)联结DE,当BD=2CD时,求证:AD=2DE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.
20、(4分)设,若,则____________.
21、(4分)在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为__________.
22、(4分)已知,则=_____.
23、(4分)点A(﹣3,0)关于y轴的对称点的坐标是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数的图象如图所示,
(1)求的值;
(2)在同一坐标系内画出函数的图象;
(3)利用(2)中你所面的图象,写出时,的取值范围.
25、(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.
求证:DF∥AC.
26、(12分)按指定的方法解下列一元二次方程:
(1)(配方法) (2)(公式法)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形性质证,△AEF≌△AEB,EF=EB,AB=AF=1,再证△DEF≌△CEB,得BC=DF,
可得AF=AD+DF=AD+BC=2BC=1.
【详解】
解:因为,四边形ABCD是平行四边形,
所以,AD∥BC,AD=BC∠C=∠FDE,∠EBC=∠F
因为,的平分线与DC交于点E,
所以,∠FAE=∠BAE,∠AEB=∠AEF
所以,△AEF≌△AEB
所以,EF=EB,AB=AF=1
所以,△DEF≌△CEB
所以,BC=DF
所以,AF=AD+DF=AD+BC=2BC=1
所以,BC=2.1.
故选B.
本题考核知识点:平行四边形、全等三角形. 解题关键点:熟记平行四边形性质、全等三角形判定和性质.
2、A
【解析】
解:∵一次函数y=kx+b的图象经过一、三象限,
∴k>1,
又该直线与y轴交于正半轴,
∴b>1.
∴k>1,b>1.
故选A.
3、C
【解析】
按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.
【详解】
解:x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,
(x﹣2)2=2,
故选:C.
本题主要考查配方法,掌握完全平方公式是解题的关键.
4、D
【解析】
由四边形ABCD是菱形,可得菱形的四条边都相等AB=BC=CD=AD,菱形的对角线互相平分且相等即AC⊥BD,OA=OC,OB=OD,又因为菱形的边长和一条对角线的长均为2,易求得OB=1,则可得AC的值,根据菱形的面积等于积的一半,即可求得菱形的面积.
【详解】
解:根据题意画出图形,如图所示:
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=2cm,AC⊥BD,OA=OC,OB=OD,
又∵菱形的边长和一条对角线的长均为2,
∴AB=AD=BD=2,
∴OB=1,
∴OA==,
∴AC=2,
∴菱形的面积为2,
故选:D.
本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.
5、C
【解析】
根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.
【详解】
解:根据黄金比的值得:37×0.1≈23℃.
故选C.
本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.
6、C
【解析】
分析:
根据二次根式的乘法法则结合平方差公式进行计算即可.
详解:
原式=.
故选C.
点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.
7、B
【解析】
利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.
【详解】
解:∵D、F分别是AB、BC的中点,
∴DF是△ABC的中位线,
∴DF=AC(三角形中位线定理);
又∵E是线段AC的中点,AH⊥BC,
∴EH=AC,
∴EH=DF=1.
故选B.
本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.
8、B
【解析】
直接利用倒数的定义进而得出答案.
【详解】
∵×()=1,
∴的倒数.
故选B.
此题主要考查了倒数,正确把握倒数的定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、低
【解析】
因为:,根据抛物线的开口向上可得答案.
【详解】
解:因为:,所以根据抛物线的开口向上,抛物线图像有最低点.
故答案:低.
本题考查的符号决定抛物线的图像的开口方向,掌握抛物线的图像特点是解题关键.
10、
【解析】
OC与AB相交于D,如图,利用作法得到OA=OB=AC=BC,则可判断四边形OACB为菱形,根据菱形的性质得到OC⊥AB,AD=BD=1,OD=CD,然后利用勾股定理计算出OD,从而得到OC的长.
【详解】
解:OC与AB相交于D,如图,
由作法得OA=OB=AC=BC,
∴四边形OACB为菱形,
∴OC⊥AB,AD=BD=1,OD=CD,
∵四边形OACB的周长为8cm,
∴OB=2,
在Rt△OBD中,OD=,
∴OC=2OD=2cm.
故答案为.
本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
11、1
【解析】
试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.
试题解析:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=4,OA=OC,OB=OD,
∴OD=OC=AC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=1.
考点: 1.菱形的判定与性质;2.矩形的性质.
12、
【解析】
试题分析:根据题意,使二次根式有意义,即x﹣1≥0,解得x≥1.
故答案是x≥1.
考点:二次根式有意义的条件.
13、AB=BC
【解析】
分析:根据领边相等的矩形是正方形,即可判定四边形ABCD是正方形.
详解:∵ AB=BC,
∴ 矩形ABCD是正方形.
故答案为AB=BC
点睛:本题考查了正方形的判定方法,熟练掌握正方形的判定方法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);;;;(2)120;30;α;(3)两个带阴影的三角形面积相等,证明见解析.
【解析】
分析:(1)过D作DE⊥AB于点E,当α=45°时,可求得DE,从而可求得菱形的面积S,同理可求当α=60°时S的值,当α=120°时,过D作DF⊥AB交BA的延长线于点F,则可求得DF,可求得S的值,同理当α=135°时S的值;
(2)根据表中所计算出的S的值,可得出答案;
(3)将△ABO沿AB翻折得到菱形AEBO,将△CDO沿CD翻折得到菱形OCFD.利用(2)中的结论,可求得△AOB和△COD的面积,从而可求得结论.
详解:(1)当α=45°时,如图1,过D作DE⊥AB于点E,
则DE=AD=,
∴S=AB•DE=,
同理当α=60°时S=,
当α=120°时,如图2,过D作DF⊥AB,交BA的延长线于点F,
则∠DAE=60°,
∴DF=AD=,
∴S=AB•DF=,
同理当α=150°时,可求得S=,
故表中依次填写:;;;;
(2)由(1)可知S(60°)=S(120°),
S(150°)=S(30°),
∴S(180°-α)=S(α)
故答案为:120;30;α;
(3)两个带阴影的三角形面积相等.
证明:如图3将△ABO沿AB翻折得到菱形AMBO,将△CDO沿CD翻折得到菱形OCND.
∵∠AOD=∠COB=90°,
∴∠COD+∠AOB=180°,
∴S△AOB=S菱形AMBO=S(α)
S△CDO=S菱形OCND=S(180°-α)
由(2)中结论S(α)=S(180°-α)
∴S△AOB=S△CDO.
点睛:本题为四边形的综合应用,涉及知识点有菱形的性质和面积、解直角三角形及转化思想等.在(1)中求得菱形的高是解题的关键,在(2)中利用好(1)中的结论即可,在(3)中把三角形的面积转化成菱形的面积是解题的关键.本题考查知识点较基础,难度不大.
15、(1)m=3;(2)
【解析】
(1)由题意将原点(0,0)代入一次函数y=(m+2)x+3- m,并求解即可;
(2)根据题意函数图象经过第一、二、三象限,可知以及,解出不等式组即可.
【详解】
解:(1)∵由函数的图象经过坐标原点,可得将(0,0)代入一次函数y=(m+2)x+3- m满足条件;
∴,解得.
(2)∵函数图象经过第一、二、三象限,
∴,解得:.
本题考查一次函数图象的性质以及解不等式组,熟练掌握一次函数图象的性质以及解不等式组的方法是解题的关键.
16、;.
【解析】
(1)将方程右边的式子提取-1变形后,方程两边同时乘以2x-1,去分母后求出x的值,将x的代入最简公分母检验,即可得到原分式方程的解;
(2)将原式被除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,把x的值代入化简后的式子中计算,即可得到原式的值.
【详解】
(1)
x=2(2x-1)+3
x-4x=3-2
-3x=1
(2)
=
=
=
把代入原式=.
考查了分式的化简求值,以及分式方程的解法,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
17、(1)y=﹣2x+1(2)18元
【解析】
(1)由图象可知y与x是一次函数关系,由函数图象过点(11,10)和(15,2),用待定系数法即可求得y与x的函数关系式.
(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.
【详解】
解:(1)设y=kx+b(k≠0),由图象可知,
,解得
∴销售量y与定价x之间的函数关系式是:y=﹣2x+1.
(2)超市每天销售这种商品所获得的利润是:
W=(﹣2×13+1)(13﹣10)=18
18、(1)见解析;(2)见解析.
【解析】
(1)在直角三角形ABC中,E为斜边AB的中点,利用斜边上的中线等于斜边的一半得到CE=AE,在直角三角形ACD中,F为斜边AD的中点,利用斜边上的中线等于斜边的一半得到AF=CF,再由EF=EF,利用SSS即可得证;
(2)由EF为三角形ABD的中点,利用中位线定理得到EF与BD平行,EF等于BD的一半,再由BD=2DC,等量代换得到EF=CD,再由EF与CD平行,得到四边形CEFD为平行四边形,可得出DE=CF,再由CF=AF,等量代换得到DE=AF.
【详解】
证明:(1)∵∠ACB=90°,且E线段AB中点,
∴CE=AB=AE,
∵∠ACD=90°,F为线段AD中点,
∴AF=CF=AD,
在△CEF和△AEF中,
,
∴△CEF≌△AEF(SSS);
(2)连接DE,
∵点E、F分别是线段AB、AD中点,
∴EF=BD,EF∥BC,
∵BD=2CD,
∴EF=CD.
又∵EF∥BC,
∴四边形CFEDD是平行四边形,
∴DE=CF,
∵CF=AF=FD,
∴AD=2DE.
此题考查了全等三角形的判定与性质,中位线定理,直角三角形斜边上的中线等于斜边的一半,以及平行四边形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、12或2
【解析】
根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当10<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1-a,a.由1-a<a可知,第二次操作时所得正方形的边长为1-a,剩下的矩形相邻的两边分别为1-a,a-(1-a)=2a-1.由于(1-a)-(2a-1)=40-3a,所以(1-a)与(2a-1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1-a>2a-1;②1-a<2a-1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.
【详解】
由题意,可知当10<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,
第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:
①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.
∵经过第三次操作后所得的矩形是正方形,
∴矩形的宽等于1-a,
即2a-1=(1-a)-(2a-1),
解得a=12;
②如果1-a<2a-1,即a>,那么第三次操作时正方形的边长为1-a.
则1-a=(2a-1)-(1-a),
解得a=2.
故答案为:12或2.
20、
【解析】
根据已知条件求出,,得到m-n与m+n,即可求出答案.
【详解】
∵,
∴,
∴,
∵m> n>0,
∴,,
∴,
故答案为:.
此题考查利用算术平方根的性质化简,平反差公式的运用,熟记公式是解题的关键.
21、2cm或22cm
【解析】
如图,设∠A的平分线交BC于E点,
∵AD∥BC,
∴∠BEA=∠DAE,
又∵∠BAE=∠DAE,
∴∠BEA=∠BAE
∴AB=BE.
∴BC=3+4=1.
①当BE=4时,AB=BE=4,□ABCD的周长=2×(AB+BC)=2×(4+1)=22;
②当BE=3时,AB=BE=3,□ABCD的周长=2×(AB+BC)=2×(3+1)=2.
所以□ABCD的周长为22cm或2cm.
故答案为:22cm或2cm.
点睛:本题考查了平行四边形的性质以及等腰三角形的性质与判定.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.
22、
【解析】
根据=设xy=3k,x+y=5k,通分后代入求出即可.
【详解】
∵=,∴设xy=3k,x+y=5k,∴+===.
故答案为.
本题考查了分式的加减,能够整体代入是解答此题的关键.
23、(3,0)
【解析】
试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)
考点:关于y轴对称的点的坐标.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)详见解析;(3)
【解析】
(1)由图像可知A,B点的坐标,将点坐标代入一次函数表达式即可确定的值;(2)取直线与x轴,y轴的交点坐标,描点,连线即可;(3)时,的取值范围即直线在直线上方图像所对应的x的取值,由图像即可知.
【详解】
解:(1)由图像可知,,.
将,两点代入中,
得,解得.
(2)对于函数,
列表:
图象如图:
(3)由图象可得:当时,x的取值范围为:.
本题考查了一次函数的综合应用,确定函数k,b值,画函数图像,根据图像写不等式解集,熟练掌握一次函数的相关知识是解题的关键.
25、见解析;
【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.
【详解】
连接BD交AC于点O.
∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.
本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.
26、(1),;(2),
【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;
(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.
【详解】
(1)
∴
解得,,;
(2)
在这里,,b=-2,
∴
解得,,
本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:
题号
一
二
三
四
五
总分
得分
30°
45°
60°
90°
120°
135°
150°
S
1
x
0
1
y
﹣2
0
2024年随机事件福建省厦门市逸夫中学九年级数学第一学期开学质量检测试题【含答案】: 这是一份2024年随机事件福建省厦门市逸夫中学九年级数学第一学期开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省厦门市瑞景外国语分校数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024年福建省厦门市瑞景外国语分校数学九年级第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省厦门市第一中学九上数学开学复习检测模拟试题【含答案】: 这是一份2024年福建省厦门市第一中学九上数学开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。