年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学考点题型归纳与方法总结(新高考)素养拓展4指数、对数、幂值的比较大小(精讲+精练)学生版+解析

    立即下载
    加入资料篮
    高考数学考点题型归纳与方法总结(新高考)素养拓展4指数、对数、幂值的比较大小(精讲+精练)学生版+解析第1页
    高考数学考点题型归纳与方法总结(新高考)素养拓展4指数、对数、幂值的比较大小(精讲+精练)学生版+解析第2页
    高考数学考点题型归纳与方法总结(新高考)素养拓展4指数、对数、幂值的比较大小(精讲+精练)学生版+解析第3页
    还剩36页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学考点题型归纳与方法总结(新高考)素养拓展4指数、对数、幂值的比较大小(精讲+精练)学生版+解析

    展开

    这是一份高考数学考点题型归纳与方法总结(新高考)素养拓展4指数、对数、幂值的比较大小(精讲+精练)学生版+解析,共39页。试卷主要包含了知识点梳理,放缩法等内容,欢迎下载使用。
    一、知识点梳理
    一、常规思路
    1. ①底数相同,指数不同时,如和,利用指数函数的单调性;
    ②指数相同,底数不同,如和利用幂函数单调性比较大小;
    ③底数相同,真数不同,如和利用指数函数单调性比较大小;
    注:除了指对幂函数,其他函数(比如三角函数,对勾函数等)也都可以利用单调性比较大小。
    2.底数、指数、真数、三角函数名都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助“媒介数”进行大小关系的判定.
    3.通过做差与0的比较来判断两数的大小;通过做商与1的比较来判断两数的大小。
    二、同构构造函数或者利用作差或作商法构造函数
    1.同构是构造函数的一种常用方法.常利用x=ln⁡ex(x∈R),x=eln⁡x(x>0)将要比较的三个数化为结构相同的式子,再将其看作同一个函数的三个值,用常值换元构造函数,利用函数的单调性比较大小.
    2.对于同时含有指数、对数结构的两个变量的等式,或者含两个变量,且结构相似的等式,比较相关的两个变量间的大小问题时,思考的逻辑路径为先分离变量,再将等式通过合理变形,放缩成结构相同的不等式,然后利用同构函数思想,转化为比较某个函数的两个函数值f(g(x))与f(h(x))的大小,最后利用函数f(x)的单调性,转化为比较自变量g(x)与h(x)的大小,实现将超越函数普通化的目的,达到事半功倍的效果。
    常见指数、对数的同构函数有:
    (1)y=xex与y=xln⁡x; (2)y=exx与y=xln⁡x;
    (3)y=x+ex与y=ln⁡x+x; (4)y=ex−x与y=x−ln⁡x。
    3.作差法、作商法是构造函数的一种最常用的方法.解题的关键是作差(或作商)后将得到式子中相同部分看作变量x,由常值换元法构造函数,利用函数的单调性比较大小.比较两个代数式的大小时,若在适当变形的基础上,能够发现这两个代数式均涉及某个特殊的“数字”,则可将该数字利用变量“x”加以表示,从而可考虑通过作差(或作商)方式,灵活构造函数,并利用函数的单调性,巧妙比较大小.
    三、放缩法
    1.ln⁡x⩽x−1(x>0);ln⁡x⩾1−1x(x>0)
    2.ex⩾x+1(x∈R);ex>x>ln⁡x(x>0); (1−x)ex⩽1(x∈R)
    3. sin⁡xa>bD.c>b>a
    2024年高考数学高频考点题型归纳与方法总结(新高考通用)
    素养拓展04 指数、对数、幂值比较大小(精讲+精练)
    一、知识点梳理
    一、常规思路
    1. ①底数相同,指数不同时,如和,利用指数函数的单调性;
    ②指数相同,底数不同,如和利用幂函数单调性比较大小;
    ③底数相同,真数不同,如和利用指数函数单调性比较大小;
    注:除了指对幂函数,其他函数(比如三角函数,对勾函数等)也都可以利用单调性比较大小。
    2.底数、指数、真数、三角函数名都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助“媒介数”进行大小关系的判定.
    3.通过做差与0的比较来判断两数的大小;通过做商与1的比较来判断两数的大小。
    二、同构构造函数或者利用作差或作商法构造函数
    1.同构是构造函数的一种常用方法.常利用x=ln⁡ex(x∈R),x=eln⁡x(x>0)将要比较的三个数化为结构相同的式子,再将其看作同一个函数的三个值,用常值换元构造函数,利用函数的单调性比较大小.
    2.对于同时含有指数、对数结构的两个变量的等式,或者含两个变量,且结构相似的等式,比较相关的两个变量间的大小问题时,思考的逻辑路径为先分离变量,再将等式通过合理变形,放缩成结构相同的不等式,然后利用同构函数思想,转化为比较某个函数的两个函数值f(g(x))与f(h(x))的大小,最后利用函数f(x)的单调性,转化为比较自变量g(x)与h(x)的大小,实现将超越函数普通化的目的,达到事半功倍的效果。
    常见指数、对数的同构函数有:
    (1)y=xex与y=xln⁡x; (2)y=exx与y=xln⁡x;
    (3)y=x+ex与y=ln⁡x+x; (4)y=ex−x与y=x−ln⁡x。
    3.作差法、作商法是构造函数的一种最常用的方法.解题的关键是作差(或作商)后将得到式子中相同部分看作变量x,由常值换元法构造函数,利用函数的单调性比较大小.比较两个代数式的大小时,若在适当变形的基础上,能够发现这两个代数式均涉及某个特殊的“数字”,则可将该数字利用变量“x”加以表示,从而可考虑通过作差(或作商)方式,灵活构造函数,并利用函数的单调性,巧妙比较大小.
    三、放缩法
    1.ln⁡x⩽x−1(x>0);ln⁡x⩾1−1x(x>0)
    2.ex⩾x+1(x∈R);ex>x>ln⁡x(x>0); (1−x)ex⩽1(x∈R)
    3. sin⁡x0,
    ∴fx在0,+∞上单调递增,∴fx>f0=0,即ex−1>x,则e0.04−1>0.04;
    令gx=ln1+x−xx>0,则g'x=11+x−1=−x1+x

    相关试卷

    新高考数学二轮考点培优专题(精讲+精练)4 指数、对数、幂值的比较大小(2份打包,原卷版+含解析):

    这是一份新高考数学二轮考点培优专题(精讲+精练)4 指数、对数、幂值的比较大小(2份打包,原卷版+含解析),文件包含新高考数学二轮考点培优专题精讲+精练4指数对数幂值的比较大小原卷版doc、新高考数学二轮考点培优专题精讲+精练4指数对数幂值的比较大小含解析doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    素养拓展34 圆锥曲线中的定点、定值问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用):

    这是一份素养拓展34 圆锥曲线中的定点、定值问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展34圆锥曲线中的定点定值问题精讲+精练原卷版docx、素养拓展34圆锥曲线中的定点定值问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    素养拓展19 等差数列中Sn的最值问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用):

    这是一份素养拓展19 等差数列中Sn的最值问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展19等差数列中Sn的最值问题精讲+精练原卷版docx、素养拓展19等差数列中Sn的最值问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map