2025届甘肃省武威市凉州区永昌镇和寨九制学校数学九上开学综合测试模拟试题【含答案】
展开
这是一份2025届甘肃省武威市凉州区永昌镇和寨九制学校数学九上开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
A.B.
C.D.
2、(4分)在中,点为的中点,平分,且于点,延长交于点,若,,则的长为( )
A.B.1C.D.2
3、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:
该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )
A.平均数B.方差C.中位数D.众数
4、(4分)边长为4的等边三角形的面积是( )
A.4B.4C.4D.
5、(4分)在平面直角坐标系中,点(a-2,a)在第三象限内,则a的取值范围是( )
A.B.C.D.
6、(4分)在△ABC中,AB=BC=2,O是线段AB的中点,P是射线CO上的一个动点,∠AOC=60,则当△PAB为直角三角形时,AP的长为
A.1,,7B.1,,C.1,,D.1,3,
7、(4分)一次函数y=3x+m-2的图象不经过第二象限,则m的取值范围是( )
A.m≤2 B.m≤-2 C.m>2 D.m0;
③关于x的方程的解为.
其中说法正确的有______只写序号
21、(4分)计算-的结果是_________.
22、(4分)函数中,当满足__________时,它是一次函数.
23、(4分)已知:一组数据,,,,的平均数是22,方差是13,那么另一组数据,,,,的方差是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE
(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.
25、(10分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.
26、(12分)如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,求四边形AEDF的周长P.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.
【详解】
解:分四种情况:
①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
故选C.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
2、B
【解析】
根据等腰三角形三线合一的性质可得BD-DN,AB-AN,再求出CN,然后判断出DM是ABCN的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.
【详解】
解:∵AD为∠BAC的平分线,BD⊥AD
∴BD=DN,AB=AN=4,
∴ CN=AC-AN-6-4=2
又∵M为△ABC的边BC的中点
∴DM是△BCN的中位线,
∴мD=CN=×2=1,
故选:B.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形三线合一的性质,熟记定理与性质并作辅助线构造出以MD为中位线的三角形是解题的关键.
3、D
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.
故选D.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
4、C
【解析】
如图,根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.
【详解】
解:如图,∵△ABC是等边三角形,AD⊥BC,
∴BD=DC=2,
在Rt△ABD中,AB=4,BD=2,
∴AD=,
∴S△ABC=BC·AD==4,
故选C.
本题考查了等边三角形的性质、勾股定理有应用、三角形的面积等,熟练掌握相关性质以及定理是解题的关键.
5、B
【解析】
利用第三象限点的坐标特征得到,然后解不等式组即可.
【详解】
∵点P(a﹣2,a)在第三象限内,∴,∴a<1.
故选B.
本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.也考查了第三象限点的坐标特征.
6、C
【解析】
当时,由对顶角的性质可得,易得,易得的长,利用勾股定理可得的长;当时,分两种情况讨论:①利用直角三角形斜边的中线等于斜边的一半得出,易得为等边三角形,利用锐角三角函数可得的长;易得,利用勾股定理可得的长;②利用直角三角形斜边的中线等于斜边的一半可得结论.
【详解】
解:如图1,当时,
,
,
,
,
为等边三角形,
,
;
如图2,当时,
,
,
,
在直角三角形中,
;
如图3,
,,
,
,
为等边三角形,
,
故选:C.
本题主要考查了勾股定理,含直角三角形的性质和直角三角形斜边的中线,运用分类讨论,数形结合思想是解答此题的关键.
7、A
【解析】一次函数y=3x+m-2的图象不经过第二象限,可得m-2≤0,解得m≤2,故选A.
8、D
【解析】
试题解析:∵AB=8,BC=15,CA=17,
∴AB2=64,BC2=225,CA2=289,
∴AB2+BC2=CA2,
∴△ABC是直角三角形,因为∠B的对边为17最大,所以AC为斜边,∠ABC=90°,
∴△ABC的面积是×8×15=60,
故错误的选项是D.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m<3且m≠2.
【解析】
分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m的范围即可.
【详解】
去分母得:m+2(x﹣1)=x+1,
解得:x=3﹣m,
由分式方程的解为正数,得到3﹣m>0,且3﹣m≠1,
解得:m<3且m≠2,
故答案为:m<3且m≠2.
此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
10、不是
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.
【详解】
对于x的值,y的对应值不唯一,故不是函数,
故答案为:不是.
本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.
11、
【解析】
根据,可设a=3k,则b=2k,代入所求的式子即可求解.
【详解】
∵,
∴设a=3k,则b=2k,
则原式=.
故答案为:.
本题考查了比例的性质,根据,正确设出未知数是本题的关键.
12、
【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【详解】
如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==
∴CD=BF+DF-BC=1+-2=-1,
故答案为-1.
此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
13、1,1.
【解析】
本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
【详解】
数据1出现了3次最多,这组数据的众数是1,
共10个数据,从小到大排列此数据处在第5、6位的数都为1,故中位数是1.
故答案为:1,1.
本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.
三、解答题(本大题共5个小题,共48分)
14、(1)当0<t≤时,CP=2.5t,CQ=2t;当时,CP=8-2.5t,CQ=2t.
(2)当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=;当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.
(3)0<t≤或s
【解析】
(1)分两种情形:当0<t≤时,当<t时,分别求解即可.
(2)分两种情形:当0<t≤时,当<t≤时,根据S△CPQ=•PC•sin∠ACD•CQ分别求解即可.
(3)分两种情形:当0<t≤,可以证明△QCP∽△DCA,当<t,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.
【详解】
解:(1)∵CA=CB,AD=BD=3,
∴CD⊥AB,
∴∠ADC=90°,
∴CD===4,
当0<t≤时,CP=2.5t,CQ=2t,
当时,CP=8-2.5t,CQ=2t.
(2)∵sin∠ACD==,
∴当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=
当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.
(3)①当0<t≤时,
∵CP=2.5t,CQ=2t,
∴=,
∵=,
∴,
∵∠PCQ=∠ACD,
∴△QCP∽△DCA,
∴0<t≤时,△QCP∽△DCA,
②当时,当∠QPC=90°时,△QPC∽△ADC,
∴,
∴,
解得:,
综上所述,满足条件的t的值为:0<t≤或s时,△QCP∽△DCA.
本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
15、 (1)见解析;(2)见解析;(3)DE=2;(4)DE=1.
【解析】
(1)根据两组对边分别平行的四边形是平行四边形进行证明即可得;
(2)根据ABCD为平行四边形,可得AB=CD, AD=BC,再根据AECF为平行四边形,可得AF=CE,AE=FC,继而可得DE=BF,根据SSS即可证明△AFB≌△CED;
(3)当DE=2时,AECF为菱形,理由:由AB=DC=2,∠ABC=∠EDC=60°可得△EDC为等边三角形,继而可得到AE=EC,根据邻边相等的平行四边形是菱形即可得;
(4)当DE=1时,AECF为矩形,理由:若AECF为矩形则有∠DEC=90°,再根据DC=2,∠D=60°,则可得∠DCE=30°,继而可得DE=1.
【详解】
(1)∵为平行四边形,∴,即,
又∵(已知),∴为平行四边形;
(2)∵为平行四边形,∴, ,
∵为平行四边形,∴,
∴,
在与中,
,
∴;
(3)当时,为菱形,理由如下:
∵,
∴为等边三角形,,,即:,
∴平行四边形为菱形;
(4)当时,为矩形,理由如下:
若为矩形得:,
∵,,
∴,∴.
本题考查了平行四边形的判定与性质、菱形的判定、矩形的判定与性质等,熟练掌握相关的性质与定理是解题的关键.
16、,
【解析】
根据分式的混合运算法则运算即可,注意m的值只能取1.
【详解】
解:原式=
=
=
把m=1代入得,原式=.
本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.
17、 (1) B地在C地的正北方向;(2)4.8km
【解析】
(1)首先根据三地距离关系,可判定其为直角三角形,然后即可判定方位;
(2)首先作,即可得出最短距离为CD,然后根据直角三角形的面积列出关系式,即可得解.
【详解】
(1)∵,即,
∴是直角三角形
∴B地在C地的正北方向
(2)作,垂足为D,
∴线段的长就是C,D两点间的最短距离.
∵是直角三角形
∴
∴所求的最短距离为
此题主要考查直角三角形的实际应用,熟练运用,即可解题.
18、所截矩形的长是,宽是
【解析】
过点作交于,交于,先利用勾股定理求出BC,易知,从而求出AN,又易证,,设,则,列出方程解出x即可
【详解】
解:过点作交于,交于
四边形是矩形
设,则
解得:
答:所截矩形的长是,宽是.
本题主要考查相似三角形的应用,在实际问题中抽象出几何图形,本题解题关键在于能够找到相似三角形列出方程
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
平移时k的值不变,只有b发生变化.
【详解】
原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,
那么新直线的k=2,b=0+1=1,
∴新直线的解析式为y=2x+1.
故答案为:y=2x+1.
本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.
20、.
【解析】
一次函数及其应用:用函数的观点看方程(组)或不等式.
【详解】
由图象得:
①的值随的值的增大而增大;
②;
③关于的方程的解为.
故答案为:①②③.
本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.
21、2
【解析】
先利用算术平方根和立方根进行化简,然后合并即可.
【详解】
解:原式=4-2=2
故答案为:2
本题考查了算术平方根和立方根的运算,掌握算术平方根和立方根是解题的关键.
22、k≠﹣1
【解析】
分析: 根据一次函数的定义解答即可,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.
详解:由题意得,
k+1≠0,
∴k ≠-1.
故答案为k ≠-1.
点睛: 本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.
23、1.
【解析】
根据平均数,方差的公式进行计算.
【详解】
解:依题意,得==22,
∴=110,
∴3a-2,3b-2,3c-2,3d-2,3e-2的平均数为
==×(3×110-2×5)=64,
∵数据a,b,c,d,e的方差13,
S2=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]=13,
∴数据3a-2,3b-2,3c-2,3d-2,3e-2方差
S′2=[(3a-2-64)2+(3b-2-64)2+(3c-2-64)2+(3d-2-64)2+(3e-2-64)2]
=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]×9
=13×9
=1.
故答案为:1.
本题考查了平均数、方差的计算.关键是熟悉计算公式,会将所求式子变形,再整体代入.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析,(2)证明见解析
【解析】
(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA.
(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.
【详解】
证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC.
又∵E、F分别是边AB、CD的中点,∴BE=DF.
∵在△BEC和△DFA中,,
∴△BEC≌△DFA(SAS).
(2)由(1)△BEC≌△DFA,
∴CE=AF,
∵E、F分别是边AB、CD的中点,
∴AE=CF
∴四边形AECF是平行四边形.
本题考查三角形全等的证明,矩形的性质和平行四边形的判定.
25、10cm
【解析】
先有∠A=30°,那么∠ABC=60°,结合BD是角平分线,那么可求出∠DBC=∠ABD=30°,在Rt△DBC中,利用直角三角形中30°的角所对的直角边等于斜边的一半,可求出BD,再利用勾股定理可求BC,同理,在Rt△ABC中,AB=2BC,即可求AB.
【详解】
解:在Rt△ABC中,∠C=90°,∠A=∠30°,
∴∠ABC=60°.
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD=30°.
∴∠ABD=∠BAD,
∴AD=DB,
在Rt△CBD中,CD=5cm,∠CBD=30°,
∴BD=10cm.
由勾股定理得,BC=5,
∴AB=2BC=10cm.
本题利用了角平分线定义、直角三角形中30°的角所对的直角边等于斜边的一半、勾股定理等知识.
26、1
【解析】
根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.
【详解】
解:在Rt△ABC中,
∵AC=6,AB=8,
∴BC==10,
∵E是BC的中点,
∴AE=BE=5,
∴∠BAE=∠B,
∵∠FDA=∠B,
∴∠FDA=∠BAE,
∴DF∥AE,
∵D、E分别是AB、BC的中点,
∴DE∥AC,DE=AC=3,
∴四边形AEDF是平行四边形
∴四边形AEDF的周长=2×(3+5)=1.
本题考查了三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.
题号
一
二
三
四
五
总分
得分
衬衫尺码
39
40
41
42
43
平均每天销售件数
10
12
20
12
12
尺码(厘米)
25
25.5
26
26.5
27
购买量(双)
1
2
3
2
2
相关试卷
这是一份2024年甘肃省武威市凉州区永昌九年制学校教研联片中考数学三模试卷,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年甘肃省武威市凉州区洪祥镇九上数学开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份[数学]2024年甘肃省武威市凉州区和平镇九年制数学校教研联片中考二模数学模拟试题,共7页。试卷主要包含了下列调查中,适宜采用全面调查.,如图,正方形,如图,已知,如图,在平面直角坐标系中,菱形,如图,在等内容,欢迎下载使用。