2025届广东省东莞市虎门汇英学校九年级数学第一学期开学质量检测模拟试题【含答案】
展开
这是一份2025届广东省东莞市虎门汇英学校九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )
A.90°B.60°C.120°D.45°
2、(4分)中,,则一定是( )
A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形
3、(4分)下列各点中,在函数y=﹣2x的图象上的是( )
A.(,1)B.(﹣,1)C.(﹣,﹣1) D(0,﹣1)
4、(4分)下列角度不可能是多边形内角和的是( )
A.180°B.270°C.360°D.900°
5、(4分)点A(-3,-4)到原点的距离为( )
A.3B.4C.5D.7
6、(4分)小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选出两个作为补充条件,使平行四边形ABCD成为正方形(如图所示).现有下列四种选法,你认为其中错误的是( )
A.①②B.②④C.①③D.②③
7、(4分)在平面直角坐标系中,反比例函数的图象上有三点,若且,则的取值范围为( )
A.B.
C.D.
8、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )
A.B.2C.2D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,折线ABC是某市在2018年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费__________元.
10、(4分)已知a2-2ab+b2=6,则a-b=_________.
11、(4分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式_____.
12、(4分)将直线y= 7x向下平移2个单位,所得直线的函数表达式是________.
13、(4分)如图,中,是延长线上一点,,连接交于点,若平分,,则________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知点E、F分别是四边形ABCD边AB、AD上的点,且DE与CF相交于点G.
(1)如图①,若AB∥CD,AB=CD,∠A=90°,且AD•DF=AE•DC,求证:DE⊥CF:
(2)如图②,若AB∥CD,AB=CD,且∠A=∠EGC时,求证:DE•CD=CF•DA:
(3)如图③,若BA=BC=3,DA=DC=4,设DE⊥CF,当∠BAD=90°时,试判断是否为定值,并证明.
15、(8分)如图,在ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.
(1)求证:四边形AECF是菱形
(2)若AB=6,BC=10,F为BC中点,求四边形AECF的面积
16、(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.
17、(10分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.
(1)求证:BF=2AD;
(2)若CE=,求AC的长.
18、(10分)如图,在矩形中,点,分别在边,上,且.
(1)求证:四边形是平行四边形.
(2)若四边形是菱形,,,求菱形的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于x的不等式组的解集为﹣3<x<3,则a=_____,b=_____.
20、(4分)一次函数的图像经过点,且的值随值的増大而增大,请你写出一个符合所有条件的点的坐标__________.
21、(4分)如图,将沿所在的直线平移得到,如果,,,那么______.
22、(4分)如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为___.
23、(4分)已知点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,则(a+b)2014=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在中,,,、分别是、边上的高,、交于点,连接.
(1)求证:;
(2)求的度数;
(3)如图2,过点作交于点,探求线段、、的数量关系,并说明理由.
25、(10分)把下列各式因式分解:
(1)x﹣xy2
(2)﹣6x2+12x﹣6
26、(12分)解下列不等式(组),并将其解集分别表示在数轴上.
(1);
(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.
【详解】
解:∵平行四边形中两个内角的度数之比为1:3,
∴设平行四边形中两个内角分别为x°,3x°,
∴x+3x=180,
解得:x=45,
∴其中较小的内角是45°.
故选D.
本题考查了平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.
2、B
【解析】
根据等腰三角形的判定方法,即可解答.
【详解】
根据在三角形中“等角对等边”,可知,选项B正确.
此题考查等腰三角形的判定,解题关键在于掌握判定定理.
3、B
【解析】
把四个选项中的点分别代入解析式y=-2x,通过等式左右两边是否相等来判断点是否在函数图象上.
【详解】
A、把(,1)代入函数y=-2x得:左边=1,右边=-1,左边≠右边,所以点(,1)不在函数y=-2x的图象上,故本选项不符合题意;
B、把(-,1)代入函数y=-2x得:左边=1,右边=1,左边=右边,所以点(-,1)在函数y=-2x的图象上,故本选项符合题意;
C、把(-,-1)代入函数y=-2x得:左边=-1,右边=1,左边≠右边,所以点(-,-1)不在函数y=-2x的图象上,故本选项不符合题意;
D、把(0,-1)代入函数y=-2x得:左边=-1,右边=0,左边≠右边,所以点(0,-1)不在函数y=-2x的图象上,故本选项不符合题意;
故选B.
本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.
4、B
【解析】
根据多边形的内角和公式即可求解.
【详解】
解:A、180°÷180°=1,是180°的倍数,故可能是多边形的内角和;
B、270°÷180°=1…90°,不是180°的倍数,故不可能是多边形的内角和;
C、360°÷180°=2,是180°的倍数,故可能是多边形的内角和;
D、900÷180=5,是180°的倍数,故可能是多边形的内角和.
故选:B.
此题主要考查多边形的内角,解题的关键是熟知多边形的内角和公式.
5、C
【解析】
根据点A的横纵坐标的绝对值与到原点的距离构成直角三角形,利用勾股定理求解即可.
【详解】
∵点A的坐标为(-3,-4),到原点O的距离:OA==5,
故选C.
本题考查了勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.
6、D
【解析】
利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.
【详解】
A、∵四边形ABCD是平行四边形,
当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,
当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
C、∵四边形ABCD是平行四边形,
当①AB=BC时,平行四边形ABCD是菱形,
当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,
当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意.
故选D.
此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.
7、D
【解析】
首先根据题意求出的值,进一步确定出点Q的坐标,然后利用双曲线关于轴对称进一步如图分两种情况分析求解即可.
【详解】
如图,点P(2,2)在反比例函数的图象上,
∴,
∵点Q(,)在反比例函数图象上,
∴,
∴Q(,),
∵双曲线关于轴对称,
∴与(,)对称的的坐标为(,),
∵点M(,)在反比例函数图象上,且,PM>PQ,
∴点M在第三象限左边的曲线上,或在右侧的曲线上,
∴点M的纵坐标的取值范围为:或,
故选:D.
本题主要考查了反比例函数图象的性质,熟练掌握相关概念及方法是解题关键.
8、C
【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选B.
本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.1
【解析】
分析:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,由此可解每多行驶1km要再付的费用.
详解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.1(元).
故答案为1.1.
点睛:本题考查了函数图象问题,解题的关键是理解函数图象的意义.
10、
【解析】
由题意得(a-b)2="6," 则=
11、y=﹣x+1
【解析】
分析:由y随着x的增大而减小可得出k<0,取k=-1,再根据一次函数图象上点的坐标特征可得出b=1,此题得解.
详解:设该一次函数的解析式为y=kx+b.
∵y随着x的增大而减小,
∴k<0,
取k=﹣1.
∵点(0,1)在一次函数图象上,
∴b=1.
故答案为y=﹣x+1.
点睛:本题考查了一次函数的性质以及一次函数图象上点的坐标特征,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.
12、y=7x-2
【解析】
根据一次函数平移口诀:上加下减,左加右减,计算即可.
【详解】
将直线y= 7x向下平移2个单位,则y=7x-2.
本题是对一次函数平移的考查,熟练掌握一次函数平移口诀是解决本题的关键.
13、1
【解析】
平行四边形的对边平行,AD∥BC,AB=AE,所以BC=2AF,根据CF平分∠BCD,可证明AE=AF,从而可求出结果.
【详解】
解:∵CF平分∠BCD,
∴∠BCE=∠DCF,
∵AD∥BC,
∴∠BCE=∠DFC,
∴∠BCE=∠EFA,
∵BE∥CD,
∴∠E=∠DCF,
∴∠E=∠BCE,
∵AD∥BC,
∴∠BCE=∠EFA,
∴∠E=∠EFA,
∴AE=AF=AB=5,
∵AB=AE,AF∥BC,
∴△AEF∽△BEC,
∴,
∴BC=2AF=1.
故答案为:1.
本题考查平行四边形的性质和相似三角形的判定和性质,平行四边形的对边平行,以等腰三角形的判定和性质.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析 (2)证明见解析 (3)答案见解析
【解析】
(1)根据已知条件得到四边形ABCD是矩形,由矩形的性质得到∠A=∠FDC=90°,根据相似三角形的性质得到∠CFD=∠AED,根据余角的性质即可得到结论;
(2)根据已知条件得到△DFG∽△DEA,推出,根据△CGD∽△CDF,得到
,等量代换即可得到结论;
(3)过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,证△BCM∽△DCN,求出,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,解方程得到CN,证出△AED∽△NFC,即可得出答案.
【详解】
(1)证明:∵AB∥CD,AB=CD,∠A=90°,
∴四边形ABCD是矩形,
∴∠A=∠FDC=90°,
∵AD•DF=AE•DC,
∴
∴△AED∽△DFC,
∴∠CFD=∠AED,
∵∠ADE+∠AED=90°,
∴∠ADE+∠CFD=90°,
∴∠DGF=90°,
∴DE⊥CF;
(2)证明:∵∠A=∠EGC,∠ADE=∠GDF,
∴△DFG∽△DEA,
∴
∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,∠AED=∠EDC,
∴∠B=∠ADC,
∵△DFG∽△DEA,
∴∠AED=∠DFG,
∴DFC=∠GDC,
∵∠DCG=∠FCD,
∴△CGD∽△CDF,
∴
∴,
∴DE•CD=CF•DA;
(3)解:为定值,
理由:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,
∵∠BAD=90°,即AB⊥AD,
∴∠A=∠M=∠CNA=90°,
∴四边形AMCN是矩形,
∴AM=CN,AN=CM,
∵在△BAD和△BCD中,
∴△BAD≌△BCD(SSS),
∴∠BCD=∠A=90°,
∴∠ABC+∠ADC=180°,
∵∠ABC+∠CBM=180°,
∴∠MBC=∠ADC,
∵∠CND=∠M=90°,
∴△BCM∽△DCN,
∴,
∴
∴
在Rt△CMB中,,BM=AM﹣AB=x﹣3,由勾股定理得:BM2+CM2=BC2,
∴
x=0(舍去),
∴
∵∠A=∠FGD=90°,
∴∠AED+∠AFG=180°,
∵∠AFG+∠NFC=180°,
∴∠AED=∠CFN,
∵∠A=∠CNF=90°,
∴△AED∽△NFC,
∴
属于相似三角形的综合题,考查矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,综合性比较强,掌握相似三角形的判定定理是解题的关键.
15、(1)详见解析;(2)2
【解析】
(1)根据对角线互相垂直的平行四边形是菱形证明即可;
(2)由菱形的性质得到AO=CO,即可得到OF为△ABC的中位线,从的得到FO∥AB,FO的长,进而得到A∠BAC=90°,EF的长.在Rt△BAC中,由勾股定理得出AC的长,根据菱形面积等于对角线乘积的一半即可得出结论.
【详解】
(1)证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,且AD∥BC.
∵DE=BF
∴AE=CF,且AE∥CF,∴四边形AECF为平行四边形.
∵AC⊥EF,∴四边形AECF为菱形.
(2)∵四边形AECF是菱形,∴AO=CO.
∵F为BC中点,∴FO∥AB,FO=AB=3,∴∠BAC=∠FOC=90°,EF=1.
∵AB=1,BC=10,∴AC=8,∴S菱形AECF=2.
本题考查了平行四边形的性质、菱形的判定及性质,三角形中位线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
16、
【解析】
连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可
【详解】
解:连接AC.
∵∠ABC=90°,AB=1,BC=2,
∴AC=,
在△ACD中,AC2+CD2=5+4=9=AD2,
∴△ACD是直角三角形,
∴S四边形ABCD=AB•BC+AC•CD,
=×1×2+××2,
=1+.
故四边形ABCD的面积为1+.
此题考查勾股定理和勾股定理的逆定理,掌握运算法则是解题关键
17、(1)见解析;(2)2+
【解析】
(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;
(2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.
【详解】
(1)证明:∵△ABC是等腰直角三角形,
∴AC=BC,∴∠FCB=∠ECA=90°,
∵AC⊥BE,BD⊥AE,
∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,
∵∠CFB=∠AFD,
∴∠CBF=∠CAE,
在△BCF与△ACE中,,
∴△BCF≌△ACE,
∴AE=BF,
∵BE=BA,BD⊥AE,
∴AD=ED,即AE=2AD,
∴BF=2AD;
(2)由(1)知△BCF≌△ACE,
∴CF=CE=,
∴在Rt△CEF中,EF==2,
∵BD⊥AE,AD=ED,
∴AF=FE=2,
∴AC=AF+CF=2+.
【点评】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键.
18、(1)见解析;(2)20.
【解析】
(1)由矩形的性质得出,,,证出,即可得出四边形是平行四边形.
(2)由菱形的性质得出,,设,则,在中,由勾股定理得出方程,解方程即可.
【详解】
(1)证明:四边形是矩形,
,,,
,
,
四边形是平行四边形.
(2)四边形是菱形,
,,
设,则,
在中,由勾股定理得:,
解得:,
,
菱形的周长.
此题考查了菱形的性质、矩形的性质、平行四边形的判定以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-3 3
【解析】
,,
所以,
解得.
20、(1,2)(答案不唯一).
【解析】
由于y的值随x值的增大而增大,根据一次函数的增减性得出k>0,可令k=1,那么y=x+1,然后写出点P的坐标即可.
【详解】
解:由题意可知,k>0即可,
可令k=1,那么一次函数y=kx+1即为y=x+1,
当x=1时,y=2,
所以点P的坐标可以是(1,2).
故答案为(1,2)(答案不唯一).
本题考查了一次函数图象上点的坐标特征,一次函数的性质,得出k>0是解题的关键.
21、
【解析】
根据已知条件和平移的性质推出AB=DE=7,△ABC∽△GEC,即可根据相似三角形性质计算GE的长度.
【详解】
解:∵△ABC沿着射线BC的方向平移得到△DEF,AB=7,
∴DE=7,∠A=∠CGE,∠B=∠DEC,
∴△DEF∽△GEC,
∴,
∵,,
∴,
∴EG=,
故填:.
本题主要考查平移的性质、相似三角形的判定和性质,解题的关键在于求证三角形相似,找到对应边.
22、1.
【解析】
由图示知:MN=AM+BN﹣AB,所以结合已知条件,根据勾股定理求出AC的长即可解答.
【详解】
解:在Rt△ABC中,根据勾股定理,AB==13,
又∵AC=12,BC=5,AM=AC,BN=BC,
∴AM=12,BN=5,
∴MN=AM+BN﹣AB=12+5﹣13=1.
故答案是:1.
本题考查勾股定理,解题的关键是结合图形得出:MN=AM+BN﹣AB.
23、1
【解析】
关于x轴对称的点,横坐标相同,纵坐标互为相反数,可求出a,b,得到答案.
【详解】
解:点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,得
a﹣1=2,b﹣1=﹣5,
解得a=3,b=﹣4,
(a+b)2014=(﹣1)2014=1,
故答案为:1.
本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见详解;(2)45°;(3)BC+BE=2BG,理由见详解.
【解析】
(1)作FH⊥BC于H,由等腰三角形的性质得出∠ABD=∠CBD,BD⊥AC,由角平分线的性质得出EF=HF,∠BEF=90°=∠BHF,证明△BEF≌△BHF,得出BE=BH,证出△BCE是等腰直角三角形,得出∠BCE=45°,BE=EC=BH,证出△CFH是等腰直角三角形,得出CH=HF=EF,即可得出结论;
(2)由BD平分∠ABC,得到∠ABD的度数,然后求得∠BFE,由直角三角形斜边上的中线定理,可得DE=CD,可得∠DEF=∠DCF=22.5°,然后根据外角定理,即可求得∠BDE;
(3)由(2)知,∠ADE=∠ABC=45°,由等腰三角形的性质得出∠A=∠ACB=67.5°,由三角形内角和定理得出∠AED=180°-∠A-∠ADE=67.5°,得出∠AED=∠A,证出DA=DE,由等腰三角形的性质得出AG=EG,即可得出结论.
【详解】
(1)证明:作FH⊥BC于H,如图所示:
则∠BHF=90°,
∵AB=BC,BD是AC边上的高,
∴∠ABD=∠CBD,BD⊥AC,
∵CE是AB边上的高,
∴CE⊥AB,
∴EF=HF,∠BEF=90°=∠BHF,
在△BEF和△BHF中,
∴△BEF≌△BHF(AAS),
∴BE=BH,
∵∠ABC=45°,
∴△BCE是等腰直角三角形,
∴∠BCE=45°,BE=EC=BH,
∴△CFH是等腰直角三角形,
∴CH=HF=EF,
∴EC+EF=BH+CH=BC;
(2)解:如图,
由(1)知,BD平分∠ABC,∠ABC=45°,
∴∠ABF=22.5°,
∴∠BFE=90°-22.5°=67.5°,
∵AB=BC,∠ABC=45°,
∴∠A=,
在直角三角形ACE中,D是AC中点,
∴DE=CD=AD,
∴∠DEF=∠DCF=90°-67.5°=22.5°,
∴∠BDE=∠BFE-∠DEF=67.5°-22.5°=45°;
(3)解:BC+BE=2BG,理由如下:如图,
由(2)得:∠DEF=∠DCF=22.5°
∴∠ADE=∠ABC=45°,
∵AB=BC,∠ABC=45°,
∴∠A=∠ACB=67.5°,
∴∠AED=180°-∠A-∠ADE=67.5°,
∴∠AED=∠A,
∴DA=DE,
∵DG⊥AE,
∴AG=EG,
∵BC=AB=BE+AE=BE+2EG=BG+EG,EG=BG-BE,
∴BC=BG+BG-BE,
∴BC+BE=2BG.
本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质与判定、等腰直角三角形的判定与性质、角平分线的性质、直角三角形斜边上的中线等;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等和等腰直角三角形是解题的关键.
25、(1)x(1﹣y)(1+y)(1)﹣6(x﹣1)1
【解析】
(1)直接提取公因式x,进而利用平方差公式分解因式即可;
(1)直接提取公因式﹣6,进而利用完全平方公式分解因式即可.
【详解】
(1)x﹣xy1=x(1﹣y1)=x(1﹣y)(1+y);
(1)﹣6x1+11x﹣6=﹣6(x1﹣1x+1)=﹣6(x﹣1)1.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
26、(1),数轴表示见解析(2)x>3,数轴表示见解析
【解析】
(1)先去分母,再去括号,移项、合并同类项,把x的系数化为1,再在数轴上表示出来即可;
(2)分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.
【详解】
解:(1)去分母得:,
去括号得:,
移项合并得:,
系数化为1得:,
在数轴上表示为:
(2),
由①得,x>3,由②得,x≥1,
故不等式组的解集为:x>3,
在数轴上表示为:
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2023-2024学年广东省东莞市虎门汇英学校数学九上期末统考试题含答案,共7页。试卷主要包含了抛物线y=,在平面直角坐标系中,点P,若n<+1<n+1,则整数n为等内容,欢迎下载使用。
这是一份广东省东莞市虎门汇英学校2023-2024学年九年级数学第一学期期末联考模拟试题含答案,共8页。
这是一份广东省东莞虎门汇英学校2023-2024学年数学八上期末质量检测模拟试题含答案,共7页。试卷主要包含了小明做了一个数学实验,如果=2a-1,那么等内容,欢迎下载使用。