2025届广东省东莞市虎门外国语学校九上数学开学联考模拟试题【含答案】
展开
这是一份2025届广东省东莞市虎门外国语学校九上数学开学联考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是( )
A.矩形 B.菱形 C.矩形或菱形 D.正方形
2、(4分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )
A.80分B.82分C.84分D.86分
3、(4分)已知y是x的一次函数,下表中列出了部分对应值:
则m等于( )
A.-1B.0C.D.2
4、(4分) 如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
A.18B.9
C.6D.条件不够,不能确定
5、(4分)如图,在菱形中,,,是边的中点,分别是上的动点,连接,则的最小值是( )
A.6B.C.D.
6、(4分)某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是( )
A.,B.,C.,D.,
7、(4分)如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A.(,0)B.(1,0)C.(,0)D.(,0)
8、(4分)计算的结果为( )
A.2B.-4C.4D.±4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若n边形的每个内角都等于150°,则n=_____.
10、(4分)如果一组数据:5,,9,4的平均数为6,那么的值是_________
11、(4分)某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则等级所在扇形的圆心角是_______º.
12、(4分)已知:,,代数式的值为_________.
13、(4分)当a=+1,b=-1时,代数式的值是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:2+6-5+
15、(8分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为分.前名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为分),现得知号选手的综合成绩为分.
(1)求笔试成绩和面试成绩各占的百分比:
(2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次。
16、(8分)如图,在△ABC中,点分别在边上,已知四边形是平行四边形。
17、(10分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(-8,0),点A的坐标为(-6,0).
(1)求k的值;
(2)若点P(x,y)是该直线上的一个动点,探究:当△OPA的面积为27时,求点P的坐标.
18、(10分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=(a为常数),如图所示. 根据图中提供的信息,解答下列问题:
(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用__________方式调查较好(填“普查”或“抽样调查”).
20、(4分)已知,则x等于_____.
21、(4分)不等式的正整数解为______.
22、(4分)化简:_______.
23、(4分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.
(1)根据题意,填写下表:
(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
25、(10分)如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.
(1)求证:DE∥BF
(2)判断四边形MENF是何特殊的四边形?并对结论给予证明;
26、(12分)(1)解方程:x2+3x-4=0 (2) 计算:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据正方形、平行四边形、菱形和矩形的定义或性质逐个进行分析,即可得出答案.
【详解】
解:正方形是特殊的矩形,即是邻边相等的矩形,
也是特殊的菱形,即有是一个角为直角的菱形;
正方形、矩形和菱形都是特殊的平行四边形,
故图中阴影部分表示的图形是正方形.
故选:D.
本题考查学生对正方形、平行四边形、菱形和矩形的包含关系的理解和掌握,解题的关键是熟练掌握这四种图形的性质.
2、D
【解析】
试题分析:利用加权平均数的公式直接计算即可得出答案.
由加权平均数的公式可知===86
考点:加权平均数.
3、B
【解析】
由于一次函数过点(-1,1)、(1,-1),则可利用待定系数法确定一次函数解析式,然后把(0,m)代入解析式即可求出m的值.
【详解】
设一次函数解析式为y=kx+b,
把(−1,1)、(1,−1)代入
解得,
所以一次函数解析式为y=−x,
把(0,m)代入得m=0.
故答案为:B.
此题考查待定系数法求一次函数解析式,解题关键在于运用一次函数图象上点的坐标特征求解m.
4、C
【解析】
因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.
【详解】
延长EP交AB于点G,延长DP交AC与点H.
∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.
又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB1.
故选C.
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
5、D
【解析】
作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,点P、M即为使PE+PM取得最小值的点,由PE+PM=PE′+PM=E′M利用S菱形ABCD= AC•BD=AB•E′M求解可得答案.
【详解】
解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则此时点P、M使PE+PM取得最小值的,
其PE+PM=PE′+PM=E′M,
∵四边形ABCD是菱形,
∴点E′在CD上,
∵,BD=6,
∴AB=,
由S菱形ABCD=AC•BD=AB•E′M得××6=•E′M,
解得:E′M=,
即PE+PM的最小值是,
故选:D.
本题主要考查菱形的性质和轴对称−最短路线问题,解题的关键是掌握利用轴对称的性质求最短路线的方法.
6、D
【解析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:把数据从小到大的顺序排列为:2,1,1,8,10;
在这一组数据中1是出现次数最多的,故众数是1.
处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:D.
此题考查中位数与众数的意义,掌握基本概念是解决问题的关键
7、D
【解析】
求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
【详解】
∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,
∴A(,2),B(2,),
∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,
∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,
即此时线段AP与线段BP之差达到最大,
设直线AB的解析式是y=kx+b,
把A、B的坐标代入得:
,
解得:k=-1,b=,
∴直线AB的解析式是y=-x+,
当y=0时,x=,
即P(,0),
故选D.
本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.
8、C
【解析】
根据算术平方根的定义进行计算即可.
【详解】
解:=4,
故选C.
本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据多边形的内角和定理:求解即可.
【详解】
解:由题意可得:,
解得.
故多边形是1边形.
故答案为:1.
主要考查了多边形的内角和定理.边形的内角和为:.此类题型直接根据内角和公式计算可得.
10、6
【解析】
根据平均数的定义,即可求解.
【详解】
根据题意,得
解得
故答案为6.
此题主要考查平均数的求解,熟练掌握,即可解题.
11、72°
【解析】
根据扇形统计图计算出C等级所在的扇形的圆心角,即可解答
【详解】
C等级所在的扇形的圆心角=(1−25%−35%−8%−12%)⋅360°=72°,
故答案为:72°
此题考查扇形统计图,难度不大
12、4
【解析】
根据完全平方公式计算即可求出答案.
【详解】
解:∵,,
∴x−y=2,
∴原式=(x−y)2=4,
故答案为:4
本题考查二次根式的化简求值和完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
13、
【解析】
分析:根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可.
详解:∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴====.
故答案为.
点睛:本题考查了分式的值,用到的知识点是完全平方公式、平方差公式和分式的化简,关键是对给出的式子进行化简.
三、解答题(本大题共5个小题,共48分)
14、9-5+
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
解:原式=6+3-5+
=9-5+.
本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题
15、(1)笔试占,面试占;(2)第一名:2号,第二名:1号,第三名:3号.
【解析】
(1)设笔试成绩占百分比为,则面试成绩占比为,根据题意列出方程,求解即可;
(2)根据笔试成绩和面试成绩各占的百分比,分别求出其余两名选手的综合成绩,即可得出答案.
【详解】
解:(1)设笔试成绩占百分比为,则面试成绩占比为.
由题意,得
∴笔试成绩占,面试成绩占.
(2)2号选手的综合成绩:
3号选手的综合成绩:
∴三位选手按综合成绩排名为:第一名:2号,第二名:1号,第三名:3号.
本题考查了加权平均数和一元一次方程的应用,熟知加权平均数的计算公式是解题的关键.
16、见解析;
【解析】
想办法证明EF∥AB即可解决问题;
【详解】
证明:,
.
,
.
,
四边形是平行四边形.
本题考查证明平行四边形,熟练掌握平行的性质及定义是解题关键.
17、 (1) ; (2) (4,9)或(-20,-9).
【解析】
分析:
(1)将点E(-8,0)代入y=kx+6中即可解得k的值;
(2)由已知易得OA=6,由(1)中所得k的值可得直线EF的解析式为:,设点P的坐标为(x,y),则点P到OA的距离为,由此可得S△OAP=,从而可得,结合解得对应的的值即可得到点P的坐标.
详解:
(1)将点E(-8,0)代入到y=kx+6中,得:-8k+6=0,
解得:;
(2)∵,
∴直线EF的解析式为:.
∵点A的坐标为(-6,0),
∴OA=6,
设点P的坐标为(x,y),则点P到OA的距离为,
∴S△OAP=,解得:,
∵,
∴或,
解得:或,
∴当△OPA的面积为27时,点P的坐标为(4,9)或(-20,-9).
点睛:“设点P的坐标为(x,y),则点P到OA的距离为,由此结合已知条件得到:S△OAP=OA·”是解答本题的关键.
18、 (1)y=t(0≤t≤) (2)6小时
【解析】
(1) 将点代入函数关系式, 解得, 有
将代入, 得, 所以所求反比例函数关系式为;
再将代入, 得,所以所求正比例函数关系式为.
(2) 解不等式, 解得,
所以至少需要经过6小时后,学生才能进入教室.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、抽样调查
【解析】
分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
详解:为了解宿迁市中小学生对中华古诗词喜爱的程度,因为人员多、所费人力、物力和时间较多,所以适合采用的调查方式是抽样调查.
故答案为抽样调查.
点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
20、2
【解析】
先化简方程,再求方程的解即可得出答案.
【详解】
解:根据题意可得x>0
∵x+2+=10
++3=10
=2
x=2.
故答案为:2.
本题考查无理方程,化简二次根式是解题的关键.
21、1
【解析】
先求出不等式的解集,然后根据解集求其非正整数解.
【详解】
解:∵,
∴,
∴正整数解是:1;
故答案为:1.
本题考查了一元一次不等式的解法,解不等式的步骤有:去分母、去括号、移项、合并同类项、系数化成1,注意,系数化为1时要考虑不等号的方向是否改变.
22、
【解析】
将原式通分,再加减即可
【详解】
= =
故答案为:
此题考查分式的化简求值,解题关键在于掌握运算法则
23、2.5
【解析】
根据题意,求小桐的三项成绩的加权平均数即可.
【详解】
95×20%+90×30%+1×50%=2.5(分),
答:小桐这学期的体育成绩是2.5分.
故答案是:2.5
本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
【解析】
(1)根据甲、乙公司的收费方式,求出y值即可;
(2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;
(3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.
【详解】
解:(1)当x=0.5时,y甲=22×0.5=11;
当x=1时,y乙=16×1+3=19;
当x=3时,y甲=22+15×2=52;
当x=3时,y甲=22+15×3=1.
故答案为:11;19;52;1.
(2)当0<x≤1时,y1=22x;
当x>1时,y1=22+15(x-1)=15x+2.
∴
y2=16x+3(x>0);
(3)当x>3时,
当y1>y2时,有15x+2>16x+3,
解得:x<3;
当y2=y2时,有15x+2=16x+3,
解得:x=3;
当y1<y2时,有15x+2<16x+3,
解得:x>3.
∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.
25、(1)见解析;(2)平行四边形,证明见解析
【解析】
(1)根据已知条件证明四边形DEBF为平行四边形,即可得到;
(2)证明△FNC≌EMA,得到FN=EM,又FN∥EM,可得结果.
【详解】
解:(1)证明:在平行四边形ABCD中,AB∥CD,AB=CD,
∵E,F分别是AB,CD的中点,
∴DF=BE,DF∥BE,
∴四边形DEBF为平行四边形,
∴DE∥BF;
(2)MENF为平行四边形,理由是:
如图,∵DE∥BF,
∴∠FNC=∠DMC=∠AME,
又∵DC∥AB,
∴∠ACD=∠CAB,又CF=AE=AB=CD,
∴△FNC≌EMA(AAS),
∴FN=EM,又FN∥EM,
∴MENF为平行四边形.
本题考查了平行四边形的性质和判定,本题考查了平行四边形的判定和性质,难度不大,解题的关键是要找到合适的全等三角形.
26、(1) (2)
【解析】
(1)解一元二次方程,将等式左边因式分解,转化成两个一元一次方程,求解即可. (2) 首先把特殊角的三角函数值代入,然后进行二次根式的运算即可.
【详解】
解:(1)原方程变形得(x-1)(x+4)=0
解得x1=1,x2=-4
经验:x1=1,x2=-4是原方程的解.
(2)原式=×××=
本题是计算题第(1)考查解二元一次方程-因式分解.(2)特殊三角函数的值.本题较基础,熟练掌握运算的方法即可求解.
题号
一
二
三
四
五
总分
得分
批阅人
x
-1
0
1
y
1
m
-1
序号
笔试成绩/分
面试成绩/分
快递物品重量(千克)
0.5
1
3
4
…
甲公司收费(元)
22
…
乙公司收费(元)
11
51
67
…
相关试卷
这是一份2025届广东省东莞市虎门汇英学校九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省东莞市虎门捷胜学校九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省东莞市翰林学校九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。