2025届广东省广州白云区六校联考九年级数学第一学期开学质量跟踪监视试题【含答案】
展开
这是一份2025届广东省广州白云区六校联考九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件中,属于随机事件的是( ).
A.凸多边形的内角和为
B.凸多边形的外角和为
C.四边形绕它的对角线交点旋转能与它本身重合
D.任何一个三角形的中位线都平行于这个三角形的第三边
2、(4分)如图,△ABC为直角三角形,∠C=90°,AC=6,BC=8,以点C为圆心,以CA为半径作⊙C,则△ABC斜边的中点D与⊙C的位置关系是( )
A.点D在⊙C上B.点D在⊙C内
C.点D在⊙C外D.不能确定
3、(4分)如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A.7,24,25B.,,C.6,8,10D.9,12,15
4、(4分)要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是( )
A.2.5B.10C.5D.以上都不对
5、(4分)如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是( )
A.4B.2C.1D.
6、(4分)如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )
A. B. C. D.
7、(4分)要使有意义,必须满足( )
A.B.C.为任何实数D.为非负数
8、(4分)用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设( )
A.三角形中有一个内角小于或等于60° B.三角形中有两个内角小于或等于60°
C.三角形中有三个内角小于或等于60° D.三角形中没有一个内角小于或等于60°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)比较大小2 _____.
10、(4分)计算: _____________.
11、(4分)在平面直角坐标系中,P(2,﹣3)关于x轴的对称点是_____
12、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.
13、(4分)若x+y=1,xy=-7,则x2y+xy2=_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)先化简代数式.求:当时代数式值.
(2)解方程:.
15、(8分)如图,四边形是平行四边形,、是对角线上的两个点,且.求证:.
16、(8分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.
(1)正方体的棱长为 cm;
(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;
(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.
17、(10分)电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.
(1)求y与x之间的函数关系式;
(2)若某天小张销售该产品获得的利润为1200元,求销售单价x的值.
18、(10分)如图,中,.
(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)
(2)在(1)的条件下,求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一元二次方程的两个根分别是矩形的边长,则矩形对角线长为______.
20、(4分)某物体对地面的压强随物体与地面的接触面积之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为,那么该物体对地面的压强是__________.
21、(4分)计算:____ .
22、(4分)如图△ABC中,∠BAC=90°,将△ABC绕点A按顺时针方向旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上,若AC=4,∠B=60∘,则CD的长为____
23、(4分)弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿BC向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0).
(1)求几秒后,PQ的长度等于5 cm.
(2)运动过程中,△PQB的面积能否等于8 cm2?并说明理由.
25、(10分)已知两地相距,甲、乙两人沿同一公路从 地出发到地,甲骑摩托车,乙骑自行车,如图中分别表示甲、乙离开地的距离 与时间 的函数关系的图象,结合图象解答下列问题.
(1)甲比乙晚出发___小时,乙的速度是___ ;甲的速度是___.
(2)若甲到达地后,原地休息0.5小时,从地以原来的速度和路线返回地,求甲、乙两人第二次相遇时距离地多少千米?并画出函数关系的图象.
26、(12分)如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.
(1)请你判断并写出FE与FD之间的数量关系(不需证明);
(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.
【详解】
解:、凸n多边形的内角和,故不可能为,所以凸多边形的内角和为是不可能事件;
、所有凸多边形外角和为,故凸多边形的外角和为是必然事件;
、四边形中,平行四边形绕它的对角线交点旋转能与它本身重合,故四边形绕它的对角线交点旋转能与它本身重合是随机事件;
、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.
故选:.
本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、B
【解析】
根据勾股定理,由△ABC为直角三角形,∠C=90°,AC=6,BC=8,求得AB=10,然后根据直角三角形的的性质,斜边上的中线等于斜边长的一半,即CD=5<AC=6,所以点D在在⊙C内.
故选B.
3、B
【解析】
根据勾股定理的逆定理,计算每个选项中两个较小数的平方的和是否等于最大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.
【详解】
A. ,能组成直角三角形,故此选项错误;
B. ,不能组成直角三角形,故此选项正确;
C. ,能组成直角三角形,故此选项错误;
D. ,能组成直角三角形,故此选项错误;
故选:B.
本题考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
4、C
【解析】
∵AB⊥BD,ED⊥AB,
∴∠ABC=∠EDC=90∘,
在△ABC和△EDC中,
,
∴△ABC≌△EDC(ASA),
∴AB=ED=5.
故选C.
5、C
【解析】
根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.
【详解】
解:∵四边形ABCD是正方形,
∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,
∴∠AOB=90°,
∵OE⊥OF,
∴∠EOF=90°,
∴∠AOE=∠BOF,
∴△AOE≌△BOF(ASA),
∴△AOE的面积=△BOF的面积,
∴四边形AFOE的面积=正方形ABCD的面积=×22=1;
故选C.
本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.
6、D
【解析】
根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.
【详解】
解:∵正方形ABCD的边长为1,
∴AB=BC=CD=DA=1
由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,
∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,
故选D.
此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.
7、A
【解析】
根据二次根式有意义的条件可得2x+5≥0,再解不等式即可.
【详解】
解:要使有意义,则2x+5≥0,
解得:.
故选:A.
本题考查二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
8、D
【解析】
熟记反证法的步骤,直接选择即可.
【详解】
根据反证法的步骤,第一步应假设结论的反面成立,
即假设三角形中没有一个内角小于或等于60°.
故选:D.
此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<
【解析】
直接利用二次根式的性质将原数变形进而得出答案.
【详解】
∵2=<.
故答案为:<.
本题主要考查了实数大小比较,正确将原数变形是解题的关键.
10、1
【解析】
根据开平方运算的法则计算即可.
【详解】
1.
故答案为:1.
本题考查了实数的运算-开方运算,比较简单,注意符号的变化.
11、(2,1)
【解析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.
【详解】
点P(2,﹣1)关于x轴的对称点的坐标是(2,1),
故答案为:2,1.
本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.
12、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=×8=4,
∵∠AFB=90°,D是AB 的中点,
∴DF=AB= ×6=3,
∴EF=DE-DF=1,
故答案为:1.
本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.
13、﹣7
【解析】
∵x+y=1,xy=﹣7,
∴x2y+xy2=xy(x+y)=-7×1=-7.
三、解答题(本大题共5个小题,共48分)
14、(1)2;(2).
【解析】
(1)把括号内通分化简,再把除法转化为乘法约分,然后把代入计算即可;
(2)两边都乘以x-2,化为整式方程求解,求出x的值后检验.
【详解】
(1)原式=
=
=
=
=,
当 时,
原式=;
(2),
两边都乘以x-2,得
3=2(x-2)-x,
解之得
x=7,
检验:当x=7时,x-2≠0,所以x=7是原方程的解.
本题考查了分式的化简求值,以及分式方程的解法,熟练掌握分式的运算法则及分式方程的求解步骤是解答本题的关键.
15、见解析
【解析】
先根据平行四边形的性质得,,则,再证明得到AE=CF.
【详解】
证明:∵四边形为平行四边形
∴,
∴
∵
∴
∴
本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.
16、(1)10;(2)y=x+(12≤x≤28);(3)4 s.
【解析】
(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;
(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x的取值范围;
(3)利用一次函数图象结合水面高度的变化得出t的值.
【详解】
(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,
所以正方体的棱长为10cm;
故答案为10cm;
(2)设线段AB对应的函数解析式为:y=kx+b,
∵图象过A(12,0),B(28,20),
∴,
解得:,
∴线段AB对应的解析式为:(12≤x≤28);
(3)∵28﹣12=16(cm),
∴没有立方体时,水面上升10cm,所用时间为:16秒,
∵前12秒由立方体的存在,导致水面上升速度加快了4秒,
∴将正方体铁块取出,经过4秒恰好将此水槽注满.
17、(1)y=−x+180;(2)120元或160元;
【解析】
(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;
(2)根据题意列出方程,解方程即可.
【详解】
(1)设y与x之间的函数关系式为y=kx+b(k≠0),
由所给函数图象可知: ,
解得:
故y与x的函数关系式为y=−x+180;
(2)由题意得:(−x+180)(x−100)=1200,
解得:x=120,或x=160.
答:若某天该网店店主销售该产品获得的利润为1200元,则销售单价为120元或160元.
此题考查一元二次方程的应用,一次函数的应用,解题关键在于列出方程
18、(1)见解析;(2)见解析.
【解析】
(1)作出∠ABC的角平分线BM交线段AC于P,利用角平分线上的点到角的两边的距离相等可知点P即为所求;
(2)过点P作PN⊥BC,交BC于点N,通过证明≌得到AB=BN,且易得PN=NC,由BC=BN+NC,等线段转化即可得证.
【详解】
解:(1)如图:利用尺规作图,作出∠ABC的角平分线BM交线段AC于P,则点到边的距离等于的长;
(2)如图,过点P作PN⊥BC,交BC于点N,由(1)可知:PA=PN,
在和中,
,
∴≌(HL),
∴AB=BN,
∵,
∴∠C=45°,
又∵∠PNC=90°
∴∠NPC=∠C=45°,
∴PN=NC,
∴BC=BN+NC=AB+PN=AB+AP.
本题主要考查了利用尺规作图作一个角的角平分线,角平分线的性质及直角三角形全等的判定.熟练掌握角平分线的性质是解决本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用因式分解法先求出方程的两个根,再利用勾股定理进行求解即可.
【详解】
方程x2-14x+48=0,即(x-6)(x-8)=0,
则x-6=0或x-8=0,
解得:x1=6,x2=8,
则矩形的对角线长是:=1,
故答案为:1.
本题考查了矩形的性质,勾股定理,解一元二次方程等知识,熟练掌握相关知识是解题的关键.
20、500
【解析】
首先通过反比例函数的定义计算出比例系数k的值,然后可确定其表达式,再根据题目中给出的自变量求出函数值
【详解】
根据图象可得
当S=0.24时,P= =500,即压强是500Pa.
此题考查反比例函数的应用,列方程是解题关键
21、1
【解析】
先算括号内,再算除法即可.
【详解】
原式=.
故答案为:1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
22、4
【解析】
先在直角三角形ABC中,求出AB,BC,然后判断出BD=AB=4,简单计算即可
【详解】
在Rt△ABC中,AC=4,∠B=60°,
∴AB=4,BC=8,
由旋转得,AD=AB,
∵∠B=60°,
∴BD=AB=4,
∴CD=BC−BD=8−4=4
故答案为:4
此题考查含30度角的直角三角形,旋转的性质,解题关键在于求出AB,BC
23、1
【解析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.
【详解】
解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得: ,
解得: ,
∴L与x之间的函数关系式为:L=2x+15;
当x=4时,L=2×4+15=1(cm)
故重物为4kg时弹簧总长L是1cm,
故答案为1.
吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.
二、解答题(本大题共3个小题,共30分)
24、 (1)1秒后PQ的长度等于5 cm;(1)△PQB的面积不能等于8 cm1.
【解析】
(1)根据PQ=5,利用勾股定理BP1+BQ1=PQ1,求出即可;
(1)通过判定得到的方程的根的判别式即可判定能否达到8cm1.
【详解】
解:(1)根据题意,得BP=(5-x),BQ=1x.
当PQ=5时,在Rt△PBQ中,BP1+BQ1=PQ1,
∴(5-x)1+(1x)1=51,
5x1-10x=0,
5x(x-1)=0,
x1=0(舍去),x1=1,
答:1秒后PQ的长度等于5 cm.
(1)设经过x秒以后,△PBQ面积为8,
×(5-x)×1x=8.
整理得x1-5x+8=0,
Δ=15-31=-7
相关试卷
这是一份2024年广东省广州白云区六校联考数学九年级第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省广州天河区七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省广州市南沙区数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。