


2025届广东省汕头市苏湾中学九年级数学第一学期开学考试试题【含答案】
展开
这是一份2025届广东省汕头市苏湾中学九年级数学第一学期开学考试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为( )
A.10°B.15°C.20°D.25°
2、(4分)如图是一个直角三角形,它的未知边的长x等于
A.13B.C.5D.
3、(4分)某交警在一个路口统计的某时段来往车辆的车速情况如表:
则上述车速的中位数和众数分别是( )
A.49,50B.49.5,7C.50,50D.49.5,50
4、(4分)学校测量了全校800名男生的身高,并进行了分组,已知身高在1.70~1.75(单位:m)这一组的频率为0.25,则该组共有男生( )
A.100名B.200名C.250名D.400名
5、(4分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )
A.30°B.45°
C.90°D.135°
6、(4分)如图1,动点P从点B出发,以2厘米/秒的速度沿路径B—C—D—E—F—A运动,设运动时间为t(秒),当点P不与点A、B重合时,△ABP的面积S(平方厘米)关于时间t(秒)的函数图象2所示,若AB=6厘米,则下列结论正确的是 ( )
A.图1中BC的长是4厘米
B.图2中的a是12
C.图1中的图形面积是60平方厘米
D.图2中的b是19
7、(4分)方程3x2﹣7x﹣2=0的根的情况是( )
A.方程没有实数根
B.方程有两个不相等的实数根
C.方程有两个相等的实数很
D.不确定
8、(4分)若分式有意义,则x的取值范围是( )
A.x≠5B.x≠﹣5C.x>5D.x>﹣5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:= .
10、(4分)将化成最简二次根式为______.
11、(4分)已知,菱形的周长为8,高为1,则菱形两邻角的度数比为_________.
12、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是________.
13、(4分)四边形ABCD中,,,,,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)分解因式:a(a﹣b)﹣b(a﹣b);(2)已知x+2y=4,求3x2+12xy+12y2的值.
15、(8分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.
16、(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
17、(10分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:
求:(Ⅰ)m=_____,n=_____;
(Ⅱ)求学生捐款数目的众数、中位数和平均数;
(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?
18、(10分)先化简,再求值:,在﹣1、0、1、2 四个数中选一个合适的代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数与的图象如图所示,则不等式kx+b<x+a的解集为_____.
20、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正确的序号是 (把你认为正确的都填上).
21、(4分)如图,在直角三角形中,,、、分别是、、的中点,若=6厘米,则的长为_________.
22、(4分)若函数是正比例函数,则常数m的值是 。
23、(4分)如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则关于x的方程k1x+a=k2x+b的解是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知点分别在菱形的边上滑动(点不与重合),且.
(1)如图1,若,求证:;
(2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;
(3)如图3,若,请直接写出四边形的面积.
25、(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.
(1)若降价3元,则平均每天销售数量为________件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
26、(12分)如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:根据正方形的性质及旋转的性质可得ΔECF是等腰直角三角形,∠DFC=∠BEC=60°,即得结果.
由题意得EC=FC,∠DCF=90°,∠DFC=∠BEC=60°
∴∠EFC=45°
∴∠EFD=15°
故选B.
考点:正方形的性质,旋转的性质,等腰直角三角形的判定和性质
点评:解答本题的关键是熟练掌握旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
2、B
【解析】
由勾股定理得:22+32=x2.
【详解】
由勾股定理得:22+32=x2.
所以,x=
故选:B
本题考核知识点:勾股定理. 解题关键点:熟记勾股定理.
3、D
【解析】
根据中位数的众数定义即可求出.
【详解】
车辆总数为:4+6+7+2+1=20辆,则中位数为:(第10个数+第11个数)
众数为出现次数最多的数:50
故选D
本题考查了中位数和众数,难度低,属于基础题,熟练掌握中位数的求法是解题关键.
4、B
【解析】
根据频数=总数×频率,直接代值计算即可.
【详解】
解:根据题意,得
该组共有男生为:800×0.25=200(人).
故选:B.
此题考查频率、频数的关系:频率=。能够灵活运用公式是解题的关键.
5、C
【解析】
根据勾股定理求解.
【详解】
设小方格的边长为1,得,
OC=
,AO=
,AC=4,
∵OC2+AO2==16,
AC2=42=16,
∴△AOC是直角三角形,
∴∠AOC=90°.
故选C.
考点:勾股定理逆定理.
6、C
【解析】
试题分析:根据图示可得BC=4×2=8厘米;图2中a=6×8÷2=24;图1中的面积为60平方厘米;图2中的b是17.
考点:函数图象的性质.
7、B
【解析】
先求一元二次方程的判别式的值,由△与0的大小关系来判断方程根的情况即可求解.
【详解】
由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,
所以方程有两个不相等的实数根.
故选B.
本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
8、A
【解析】
解:∵若分式有意义,
∴x﹣5≠0,∴x≠5;
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
试题分析:原式=.故答案为.
考点:因式分解-运用公式法.
10、1
【解析】
最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
【详解】
化成最简二次根式为1.
故答案为1
本题考核知识点:简二次根式.解题关键点:理解简二次根式的条件.
11、5:1(或1:5)
【解析】
先根据菱形的性质求出边长,再根据直角三角形的性质求出,得出,即可得出结论.
【详解】
解:如图所示:四边形是菱形,菱形的周长为8,
,,
,,
,
,
,
故答案为:5:1(或1:5).
本题考查了菱形的性质、含角的直角三角形的判定;熟练掌握菱形的性质和含角的直角三角形的判定是解决问题的关键.
12、乙
【解析】
根据方差的定义,方差越小数据越稳定,方差最小的为乙,所以这四人中水平发挥最稳定的是乙.
【详解】
解:由表可知:S乙2=0.015<S丙2=0.025<S甲2=0.035<S丁2=0.1.故四人中乙发挥最稳定.
故答案为:乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、2
【解析】
画出图形,作CE⊥AD,根据矩形性质和勾股定理求出DE,再求BC.
【详解】
已知,如图所示,作CE⊥AD,则=,
因为,,
所以,==,
所以,四边形ABCE是矩形,
所以,AE=BC,CE=AB=3,
在Rt△CDE中,
DE=,
所以,BC=AE=AE-DE=6-4=2.
故答案为2
本题考核知识点:矩形的判定,勾股定理. 解题关键点:构造直角三角形.
三、解答题(本大题共5个小题,共48分)
14、(1)(a﹣b)2;(2)1.
【解析】
(1)直接提取公因式(a-b),进而分解因式得出答案
(2)直接利用提取公因式法分解因式进而把已知代入得出答案
【详解】
解:(1)a(a﹣b)﹣b(a﹣b)
=(a﹣b)(a﹣b)
=(a﹣b)2;
(2)∵x+2y=4,
∴3x2+12xy+12y2
=3(x2+4xy+4y2)
=3(x+2y)2
把x+2y=4代入得:
原式=3×42=1.
此题考查提取公因式法,掌握运算法则是解题关键
15、详见解析
【解析】
由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.
【详解】
证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠1=∠EAF,
∵∠1=∠1,
∴∠EAF=∠1,
∴AE∥CF,
∴四边形AECF是平行四边形.
本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.
16、(1)应安排4天进行精加工,8天进行粗加工
(2)①=
②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
【解析】
解:(1)设应安排天进行精加工,天进行粗加工,
根据题意得
解得
答:应安排4天进行精加工,8天进行粗加工.
(2)①精加工吨,则粗加工()吨,根据题意得
=
②要求在不超过10天的时间内将所有蔬菜加工完,
解得
又在一次函数中,,
随的增大而增大,
当时,
精加工天数为=1,
粗加工天数为
安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
17、40 30
【解析】
分析:(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出的数值即可;
(Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可;
(Ⅲ)利用求得的平均数乘总人数得出答案即可.
详解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人.
12÷30=40%,9÷30=30%,
所以扇形统计图中的
故答案为40,30;
(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多,
∴学生捐款数目的众数是50元;
∵按照从小到大排列,处于中间位置的两个数据都是50,
∴中位数为50元;
这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元).
(Ⅲ)根据题意得:
2500×81=202500元
答:估计该校学生共捐款202500元.
点睛: 本题考查扇形统计图, 用样本估计总体, 加权平均数, 中位数, 众数等,熟练掌握各个概念是解题的关键.
18、1.
【解析】
分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.
详解:原式=
=
=
=3x+10
当 x=1 时,原式=3×1+10=1.
点睛:本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>1
【解析】
利用函数图象,写出直线在直线下方所对应的自变量的范围即可.
【详解】
解:根据图象得,当x>1时,kx+b<x+a.
故答案为x>1.
本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在直线下方所对应的所有的点的横坐标所构成的集合.数型结合是解题的关键.
20、①②④
【解析】
分析:∵四边形ABCD是正方形,∴AB=AD。
∵△AEF是等边三角形,∴AE=AF。
∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF。
∵∠CAD≠∠DAF,∴DF≠FG。
∴BE+DF≠EF。∴③说法错误。
∵EF=2,∴CE=CF=。
设正方形的边长为a,在Rt△ADF中,,解得,
∴。
∴。∴④说法正确。
综上所述,正确的序号是①②④。
21、6厘米
【解析】
根据直角三角形斜边中线等于斜边一半算出AB,再根据中位线的性质求出EF即可.
【详解】
∵∠BCA=90°,且D是AB的中点,CD=6,
∴AB=2CD=12,
∵E、F是AC、BC的中点,
∴EF=.
故答案为:6厘米
本题考查直角三角形中线的性质、中位线的性质,关键在于熟练掌握相关基础知识.
22、-3
【解析】
根据函数是正比例函数知x的幂是一次得,m=±3,m=3不符合题意,舍去得m=-3.
23、x=1
【解析】
由交点坐标就是该方程的解可得答案.
【详解】
关于x的方程k2x+b=k1x+a的解,
即直线y1=k1x+a与直线y2=k2x+b的交点横坐标,
所以方程的解为x=1.
故答案为:1.
本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为.
【解析】
(1)根据菱形的性质及已知,得到,再证,
根据三角形全等的性质即可得到结论;
(2)作,垂足分别为点,证明,根据三角形全等的性质即可得到结论;
(3)根据菱形的面积公式,结合(2)的结论解答.
【详解】
解:(1)∵四边形是菱形,
∴,.
∵,∴,
∴.
∵,∴,∴.
在和中,,
∴,
∴.
(2)若与不垂直,(1)中的结论还成立证明如下:
如图,作,垂足分别为点.
由(1)可得,
∴,
在和中,,
∴,∴.
(3)如图,连接交于点.
∵,∴为等边三角形,
∵,∴,同理,,
∴四边形的面积四边形的面积,
由(2)得四边形的面积四边形AECF的面积
∵,
∴,,
∴四边形的面积为,
∴四边形的面积为.
本题主要考查全等三角形的性质和判定,菱形的性质的应用.主要考查学生的推理能力,证明三角形全等是解题的关键.
25、(1)26;(2)每件商品降价2元时,该商店每天销售利润为12元.
【解析】
分析:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为1+6=26件;
(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.
详解:(1)若降价3元,则平均每天销售数量为1+2×3=26件.
(2)设每件商品应降价x元时,该商店每天销售利润为12元.
根据题意,得 (40-x)(1+2x)=12,
整理,得x2-30x+2=0,
解得:x1=2,x2=1.
∵要求每件盈利不少于25元,
∴x2=1应舍去,
∴x=2.
答:每件商品应降价2元时,该商店每天销售利润为12元.
点睛:此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
26、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可.
(2)根据平行四边形的对角线相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.
试题解析:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线.
∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC.
∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF.
∴∠DAH=∠DHA,∠FAH=∠FHA.
∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,
∴∠DHF=∠BAC.∴∠DHF=∠DEF.
考点:1.三角形中位线定理;2.直角三角形斜边上的中线性质;3.平行四边形的判定.
题号
一
二
三
四
五
总分
得分
批阅人
车速(km/h)
48
49
50
51
52
车辆数(辆)
4
6
7
2
1
选手
甲
乙
丙
丁
众数(环)
9
8
8
10
方差(环2)
0.035
0.015
0.025
0.27
销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
捐款(元)
20
50
100
150
200
人数(人)
4
12
9
3
2
相关试卷
这是一份2024年广东省汕头市六校数学九年级第一学期开学经典试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省汕头市苏湾中学九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,若两个相似三角形的周长之比是1等内容,欢迎下载使用。
这是一份2023-2024学年广东省汕头市苏湾中学八上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了答题时请按要求用笔,近似数0.13是精确到,下列命题中,真命题是,如图,直线,则等内容,欢迎下载使用。
