2025届广西玉林市博白县九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若a为有理数,且满足|a|+a=0,则( )
A.a>0B.a≥0C.a<0D.a≤0
2、(4分)已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有( )组.
A.4B.5C.6D.7
3、(4分)如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为( )
A.30°B.35°C.40°D.45°
4、(4分)下列各表达式不是表示与x的函数的是( )
A.B.C.D.
5、(4分)已知空气的单位质量是0.001239g/cm3,用科学记数法表示该数为( )
A.B.C.D.
6、(4分)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为( )
A.6B.8C.12D.10
7、(4分)某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):
下列说法错误的是( )
A.在这个变化中,自变量是温度,因变量是声速
B.温度越高,声速越快
C.当空气温度为20℃时,声音5s可以传播1740m
D.当温度每升高10℃,声速增加6m/s
8、(4分)小华、小明两同学在同一条长为1100米的直路上进行跑步比赛,小华、小明跑步的平均速度分别为3米/秒和5米/秒,小明从起点出发,小华在小明前面200米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设小华与小明之间的距离y(单位:米),他们跑步的时间为x(单位:秒),则表示y与x之间的函数关系的图象是( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直线y=2x+1经过点(a,0),则a=________.
10、(4分)边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.
11、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)
12、(4分)已知点P(-1,m),Q(-2,n)都在反比例函数的图像上,则m____n(填“>”或“<”或“=”).
13、(4分)分解因式:2a3﹣8a=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某县为发展教育事业,加强对教育经费投入,2012年投入3000万元,2014年投入3630万元,
(1)求该县教育经费的年平均增长率;
(2)若增长率保持不变,预计2015年该县教育经费是多少.
15、(8分)如图,四边形是平行四边形,、是对角线上的两个点,且.求证:.
16、(8分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.
(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;
(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;
(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.
17、(10分)解方程:x2﹣4x+3=1.
18、(10分)计算:
(1)
(2)()()
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.
20、(4分)如图,平行四边形中,点为边上一点, 和交于点,已知的面积等于6, 的面积等于4,则四边形的面积等于__________.
21、(4分)如图,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=1.则GH的长为__________.
22、(4分)把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为_________
23、(4分)在等腰三角形ABC中,AB=AC,∠B=30°,BC=cm,P是BC上任意一点,过P作PD//AB,PE//AC,则PE+PD的值为__________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八(1)班次数学测验(卷面满分分)成绩统计,有的优生,他们的人均分为分,的不及格,他们的人均分为分,其它同学的人均分为分,求全班这次测试成绩的平均分.
25、(10分)已知四边形是菱形,点分别在上,且,点分别在上,与相交于点.
(1)如图1,求证:四边形是菱形;
(2)如图2,连接,在不添加任何辅助线的情况下,请直接写出面积相等的四边形
26、(12分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题解析:
即为负数或1.
故选D.
2、C
【解析】
分析:根据平行四边形的判定来进行选择.①两组对边分别平行的四边形是平行四边形;②两组对角分别平行的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.
详解:共有6组可能:①②;①③;①④;①⑤;②⑤;④⑤.
选择①与②:∵AB∥CD,
∴∠BAO=∠DCO,∠ABO=∠CDO,
在△AOB与△COD中,
,
∴△AOB≌△COD,
∴AB=CD,
∴四边形ABCD为平行四边形.
①与③(根据一组对边平行且相等)
①与④:∵∠BAD=∠DCB
∴AD∥BC
又AB∥DC
根据两组对边分别平行可推出四边形ABCD为平行四边形.
①与⑤,根据定义,两组对边分别平行的四边形是平行四边形;
②与⑤:∵AD∥BC
OA=OC
∴△AOD≌△COB
故AD=BC,四边形ABCD为平行四边形.
④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形.
共有6种可能.
故选C.
点睛:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.
3、B
【解析】
由旋转性质等到△ABD为等腰三角形,利用内角和180°即可解题.
【详解】
解:由旋转可知,∠BAD=110°,AB=AD
∴∠B=∠ADB,
∠B=(180°-110°)2=35°,
故选B.
本题考查了等腰三角形的性质,三角形的内角和,属于简单题,熟悉旋转的性质是解题关键.
4、C
【解析】
根据函数的概念进行判断。满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案.
【详解】
解:A、y=3x2对于x的每一个取值,y都有唯一确定的值,所以y是x的函数,不符合题意;
B、对于x的每一个取值,y都有唯一确定的值是,所以y是x的函数,不符合题意;
C、对于x的每一个取值,y都有两个值,所以y不是x的函数,符合题意;
D、y=3x+1对于x的每一个取值,y都有唯一确定的值,所以y是x的函数,不符合题意.
故选:C.
主要考查了函数的概念.函数的概念:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
5、C
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.001219=1.219×10-1.
故选:C.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6、D
【解析】
要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
【详解】
解:如图,连接BM,
∵点B和点D关于直线AC对称,
∴NB=ND,
则BM就是DN+MN的最小值,
∵正方形ABCD的边长是8,DM=2,
∴CM=6,
∴BM==1,
∴DN+MN的最小值是1.
故选:D.
此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.
7、C
【解析】
根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.
【详解】
∵在这个变化中,自变量是温度,因变量是声速,
∴选项A正确;
∵根据数据表,可得温度越高,声速越快,
∴选项B正确;
∵342×5=1710(m),
∴当空气温度为20℃时,声音5s可以传播1710m,
∴选项C错误;
∵324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),
∴当温度每升高10℃,声速增加6m/s,
∴选项D正确.
故选C.
此题主要考查了自变量、因变量的含义和判断,要熟练掌握.
8、D
【解析】
试题分析:跑步时间为x秒,当两人距离为0时,即此时两个人在同一位置,此时,即时,两个人距离为0,当小华到达终点时,小明还未到达,小华到达终点的时间为s,此时小明所处的位置为m,两个人之间的距离为m。
考点:简单应用题的函数图象
点评:此题较为简单,通过计算两个人相遇时的时间,以及其中一个人到达终点后,两个人之间的距离,即可画出图象。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
代入点的坐标,求出a的值即可.
【详解】
将(a,0)代入直线方程得:2a+1=0
解得,a=,
故答案.
本题考查了直线方程问题,考查函数代入求值,是一道常规题.
10、5
【解析】
由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S =S,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.
【详解】
∵四边形ABCD为正方形,
∴∠D=∠ABC=90°,AD=AB,
∴∠ABE=∠D=90°,
∵∠EAF=90°,
∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
∴∠DAF=∠BAE,
∴△AEB≌△AFD(ASA),
∴S =S ,
∴它们都加上四边形ABCF的面积,
可得到四边形AECF的面积=正方形的面积=5.
故答案为:5.
此题考查全等三角形的判定与性质,正方形的性质,解题关键在于掌握判定定理.
11、<
【解析】
利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.
【详解】
解:由折线统计图得乙运动员的成绩波动较大,
所以S甲2<S乙2
故选<
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.
12、>
【解析】
根据反比例函数的图像特点即可求解.
【详解】
∵点P(-1,m),Q(-2,n)都在反比例函数的图像上,
又-1>-2,反比例函数在x<0时,y随x的增大而增大,
∴m>n
此题主要考查反比例函数的图像,解题的关键是熟知反比例函数的图像特点.
13、2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
三、解答题(本大题共5个小题,共48分)
14、(1)10%;(2)3993万元.
【解析】
(1)设平均增长率为x,因为2012年投入3000万元,所以2013年投入3000(1+x)万元,2014年投入万元,然后可得方程,解方程即可;(2)根据(1)中x的值代入3630(1+x)计算即可.
【详解】
解:(1)设平均增长率为x,根据题意得
,
,
,
,
所以(舍去),
(2)3630(1+10%)=3993(万元)
答:年平均增长率为10%,预计2015年教育经费投入为3993万元.
本题考查一元二次方程的应用,增长率问题.
15、见解析
【解析】
先根据平行四边形的性质得,,则,再证明得到AE=CF.
【详解】
证明:∵四边形为平行四边形
∴,
∴
∵
∴
∴
本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.
16、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)
【解析】
(1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC, ,即可判定为平行四边形;
(2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;
(3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.
【详解】
解:(1)①,②平行四边形;
由已知条件和三角形中位线定理,得
又∵
∴
②由三角形中位线定理得,
DE∥AC, ,
∴四边形是平行四边形;
(2)结论①不变,结论②由平行四边形变为菱形,
四边形是菱形的理由是:
∵,都是的中位线,
∴,
∴四边形是平行四边形
∵是的中位线,
∴
∵
∴,
∴
∴平行四边形是菱形.
(3)设,
当,是等腰直角三角形,
∴
∴
由三角形中位线定理得,,
∴,且和互相垂直平分
∴四边形为正方形,
∵,EF⊥AD,
∴
∴
又∵,
∴四边形为矩形,
∴,
∴所求面积比为
(1)此题主要考查三角形中位线定理的应用,利用其进行等式转换和平行四边形的判定,即可得解;
(2)此题主要考查菱形的判定,熟练掌握,即可解题;
(3)此题主要考查正方形和矩形的判定,关键是利用正方形和矩形的面积关系式,即可解题.
17、x1=1,x2=2.
【解析】
试题分析:本题考查了一元二次方程的解法,用十字相乘法分解因式求解即可.
解:x2﹣4x+2=1
(x﹣1)(x﹣2)=1
x﹣1=1,x﹣2=1
x1=1,x2=2.
18、(1);(2)
【解析】
(1)直接化简二次根式进而计算得出答案;
(2)直接利用二次根式的乘法运算法则计算得出答案.
【详解】
(1)原式
.
(2)原式
.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.
【详解】
如图,由题意知,AB=5,AC=6,
∴AO=OC=3,
∵菱形对角线互相垂直平分,
∴△ABO为直角三角形,
在Rt△ABO中,AB=5,AO=3,
∴BO==4,
故BD=2BO=1,
故答案为: 1.
本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.
20、11
【解析】
由△ABF的面积等于6, △BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.
【详解】
∵△ABF的面积等于6, △BEF的面积等于4,
∴EF:AF=4:6=2:3,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴△ADF∽△EBF,
∴,
∵S△BEF=4,
∴S△ADF=9,
∴S△ABD=S△ABF+S△AFD=6+9=15,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵BD是公共边,
∴△BCD≌△DAB,
∴S△BCD=S△DAB=15,
∴S四边形CDFE=S△BCD-S△BEF=15-4=11,
故答案为11.
本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.
21、1
【解析】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P,根据正方形的性质可得,再根据同角的余角相等可得,然后利用“角边角”证明,根据全等三角形对应边相等可得,然后代入数据即可得解.
【详解】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P
∵四边形ABCD是正方形
∴
∴
∵
∴
∴
在△EFM和△HGN中
∴
∴
∵
∴
即GH的长为1
故答案为:1.
本题考查了矩形的线段长问题,掌握正方形的性质、全等三角形的性质以及判定定理是解题的关键.
22、y=-2x+1
【解析】
试题分析:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+1.
故答案是y=﹣2x+1.
考点:一次函数图象与几何变换.
23、6
【解析】
分析:先证明BE=PE,AE=PD,把求PE+PD的长转化为求AB的长,然后作AF⊥BC于点F,在Rt△ABF中求AB的长即可.
详解:∵AB=AC,∠B=30°,
∴∠B=∠C=30°,
∵PE//AC,
∴∠BPE=∠C=30°,
∴∠BPE=∠B=30°,
∴BE=PE.
∵PD//AB,PE//AC,
∴四边形AEPD是平行四边形,
∴AE=PD,
∴PE+PD=BE+AE=AB.
作AF⊥BC于点F.
∴,.
∵AB2=AF2+BF2,
∴,
∴AB=6,
故答案为:6.
点睛:本题考查了平行线的性质,等腰三角形的判定与性质,平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,根据题意把求PE+PD的长转化为求AB的长是是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、平均分1
【解析】
根据加权平均数的计算方法可计算出这次测验全班成绩的平均数.
【详解】
解:.
故答案为:平均分1.
本题考查加权平均数的计算方法,正确的计算加权平均数是解题的关键.
25、(1)见解析;(2)四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.
【解析】
(1)由MG∥AD,NF∥AB,可证得四边形AMEN是平行四边形,又由四边形ABCD是菱形,BM=DN,可得AM=AN,即可证得四边形AMEN是菱形;
(2)根据四边形AMEN是菱形得到ME=NE,S△AEM=S△AEN,作出辅助线,证明△MHB≌△NKD(AAS),得到MH=NK,从而得到S四边形MBFE=S四边形DNEG,继而求得答案.
【详解】
(1)证明:∵MG∥AD,NF∥AB,
∴四边形AMEN是平行四边形,
∵四边形ABCD是菱形,
∴AB=AD,
∵BM=DN,
∴AB−BM=AD−DN,
∴AM=AN,
∴四边形AMEN是菱形;
(2)解:∵四边形AMEN是菱形,
∴ME=NE,∴S△AEM=S△AEN,
如图所示,过点M作MH⊥BC于点H,过点N作NK⊥CD于点K,
∴∠MHB=∠NKD=90°
∵四边形ABCD是菱形,
∴∠B=∠D,
∵BM=DN,
∴△MHB≌△NKD(AAS),
∴MH=NK
∴S四边形MBFE=S四边形DNEG,
∴S四边形MBCG=S四边形DNFC,S四边形ABFE=S四边形ADGE,S四边形ABFN=S四边形ADGM.
∴面积相等的四边形有:四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.
此题考查了菱形的性质与判定.解题的关键是掌握菱形的性质以及判定定理.
26、1
【解析】
首先根据平行四边形的性质和对角线的和求得AO+OD的长,然后根据BC的长求得AD的长,从而求得△AOD的周长.
【详解】
解:如图:
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
∵AC+BD=28,
∴AO+OD=14,
∵AD=BC=12,
∴△AOD的周长=AO+OD+AD=14+12=1.
本题考查了平行四边形的性质,解题的关键是了解平行四边形的对角线互相平分,难度不大.
题号
一
二
三
四
五
总分
得分
批阅人
温度/℃
﹣20
﹣10
0
10
20
30
声速/m/s
318
324
330
336
342
348
2025届广西博白县九上数学开学经典模拟试题【含答案】: 这是一份2025届广西博白县九上数学开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西壮族自治区北海市数学九上开学达标检测模拟试题【含答案】: 这是一份2024年广西壮族自治区北海市数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。