|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届广州市第十中学九上数学开学联考模拟试题【含答案】
    立即下载
    加入资料篮
    2025届广州市第十中学九上数学开学联考模拟试题【含答案】01
    2025届广州市第十中学九上数学开学联考模拟试题【含答案】02
    2025届广州市第十中学九上数学开学联考模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届广州市第十中学九上数学开学联考模拟试题【含答案】

    展开
    这是一份2025届广州市第十中学九上数学开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列式子从左到右的变形一定正确的是( )
    A.B.C.D.
    2、(4分)如果分式有意义,则a的取值范围是( )
    A.a为任意实数出B.a=3C.a≠0D.a≠3
    3、(4分)如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为( )
    A.2B.3C.4D.
    4、(4分)下列命题中,有几个真命题 ( )
    ①同位角相等 ②直角三角形的两个锐角互余
    ③平行四边形的对角线互相平分且相等 ④对顶角相等
    A.1个B.2个C.3个D.4个
    5、(4分)如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是( )
    A.7B.8C.7D.7
    6、(4分)关于一次函数的图象,下列说法正确的是( )
    A.图象经过第一、二、三象限
    B.图象经过第一、三、四象限
    C.图象经过第一、二、四象限
    D.图象经过第二、三、四象限
    7、(4分)二次根式在实数范围内有意义,则a的取值范围是( )
    A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2
    8、(4分)关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是( )
    A.②④B.②③C.①④D.①③
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果一组数据:5,,9,4的平均数为6,那么的值是_________
    10、(4分)若一次函数y=(m-1)x-m的图象经过第二、三、四象限,则的取值范围是______.
    11、(4分)如图,某自动感应门的正上方处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时(米),感应门自动打开,则_________米.
    12、(4分)与最简二次根式是同类二次根式,则__________.
    13、(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为1.
    (1)求点C的坐标及直线BC的解析式;
    (2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;
    (3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
    15、(8分)为迎接4月23日的世界读书日,某书店制定了活动计划,如表是活动计划的部分信息:
    (1)杨经理查看计划时发现:A类图书的标价是B类图书标价的1.5倍.若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本.请求出A、B两类图书的标价.
    (2)经市场调查后,杨经理发现他们高估了“读书日”对图书销售的影响,便调整了销售方案:A类图书每本按标价降低a元()销售,B类图书价格不变.那么书店应如何进货才能获得最大利润.
    16、(8分)在平行四边形中,和的平分线交于的延长线交于,是猜想:
    (1)与的位置关系?
    (2)在的什么位置上?并证明你的猜想.
    (3)若,则点到距离是多少?
    17、(10分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.
    18、(10分)计算:2÷×.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.
    20、(4分)在反比例函数图象上有三个点A(,)、B(,)、C(,),若<0<<,则,, 的大小关系是 .(用“<”号连接)
    21、(4分)若点、在双曲线上,则和的大小关系为______.
    22、(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为______ .
    23、(4分)若方程(k为常数)有两个不相等的实数根,则k取值范围为 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在△ABC 中,AB=AC,∠BAC=120°,E 为 BC 上一点,以 CE 为直径作⊙O 恰好经过 A、C 两点, PF⊥BC 交 BC 于点 G,交 AC 于点 F.
    (1)求证:AB 是⊙O 的切线;
    (2)如果 CF =2,CP =3,求⊙O 的直径 EC.
    25、(10分)某智能手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
    已知A,B两款手机的进货和销售价格如下表:
    (1)今年A款手机每部售价多少元?
    (2)该店计划新进一批A款手机和B款手机共90部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?
    26、(12分)为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A,B两种型号足球共100个.
    (1)若该校购买A,B两种型号足球共用了22000元,则分别购买两种型号足球多少个?
    (2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.
    【详解】
    A.无法进行运算,故A项错误.
    B.当c=0时无法进行运算,故B项错误.
    C. 无法进行运算,故C项错误.
    D. ,故D项正确.
    故答案为:D
    本题考查分式的性质,熟练掌握分式的性质定理是解题的关键.
    2、D
    【解析】
    直接利用分式的分母不等于0,进而得出答案.
    【详解】
    解:分式有意义,则,
    解得:.
    故选:D.
    此题主要考查了分式有意义的条件,正确把握定义是解题关键.
    3、A
    【解析】
    连接BD、ND,由勾股定理得可得BD=4,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.
    【详解】
    连接BD、ND,
    由勾股定理得,BD==4,
    ∵点E、F分别为DM、MN的中点,
    ∴EF=DN,
    当DN最长时,EF长度的最大,
    ∴当点N与点B重合时,DN最长,
    ∴EF长度的最大值为BD=2,
    故选A.
    本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.
    4、B
    【解析】
    解:①只有在两直线平行的前提下,同位角才相等,错误; ②直角三角形的两个锐角互余,正确;③平行四边形的对角线互相平分,不一定相等,错误; ④对顶角相等,正确
    故选B
    5、C
    【解析】
    12和5为两条直角边长时,求出小正方形的边长7,即可利用勾股定理得出EF的值.
    【详解】
    ∵AE=5,BE=12,即12和5为两条直角边长时,
    小正方形的边长=12-5=7,
    ∴EF=;
    故选C.
    本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
    6、B
    【解析】
    试题分析:∵一次函数的,∴函数图象经过第一、三象限,∵,∴函数图象与y轴负半轴相交,∴一次函数的图象经过第一、三、四象限.故选B.
    考点:一次函数图象与系数的关系.
    7、B
    【解析】
    分析已知和所求,要使二次根式在实数范围内有意义,则其被开方数大于等于0;易得a+1≥0,解不等式a+1≥0,即得答案.
    【详解】
    解:∵二次根式在实数范围内有意义,
    ∴a+1≥0,解得a≥-1.
    故选B.
    本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;
    8、C
    【解析】
    分别利用概率的意义分析得出答案.
    【详解】
    ①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;
    ②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;
    ③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;
    ④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.
    故选C.
    此题主要考查了概率的意义,正确理解概率的意义是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、6
    【解析】
    根据平均数的定义,即可求解.
    【详解】
    根据题意,得
    解得
    故答案为6.
    此题主要考查平均数的求解,熟练掌握,即可解题.
    10、0<<1
    【解析】
    一次函数y=(m-1)x-m的图象经过第二、三、四象限,则一次项系数m-1是负数,-m是负数,即可求得m的范围.
    【详解】
    根据题意得:,
    解得:0<m<1,
    故答案为:0<m<1.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    11、1.1
    【解析】
    过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.
    【详解】
    解:如图,过点D作DE⊥AB于点E,
    依题意知,BE=CD=1.6米,ED=BC=1.2米,AB=2.1米,
    则AE=AB−BE=2.1−1.6=0.9(米).
    在Rt△ADE中,由勾股定理得到:AD==1.1(米)
    故答案是:1.1.
    本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.
    12、1
    【解析】
    先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.
    【详解】
    解:∵,
    ∴m+1=2,
    ∴m=1.
    故答案为1.
    本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.
    13、620
    【解析】
    设慢车的速度为a千米/时,快车的速度为b千米/时,根据题意可得5(a+b)=800,,联立求出a、b的值即可解答.
    【详解】
    解:设慢车的速度为a千米/时,快车的速度为b千米/时,由图可知两车5个小时后相遇,且总路程为800千米,则5a+5b=800,即a+b=160,
    再根据题意快车休息2个小时后,以原速的继续向甲行驶,则快车到达甲地的时间为:
    ,同理慢车回到甲地的时间为:,而快车比慢车早到2.25小时,但是由题意知快车为休息2小时出发而慢车是休息3小时,即实际慢车比快车晚出发1小时,即实际快车到甲地所花时间比慢车快2.25-1=1.25小时,
    即:,化简得5a=3b,
    联立得,解得,
    所以两车相遇的时候距离乙地为=500千米,
    快车到位甲地的时间为=2.5小时,
    而慢车比快车多休息一个小时则此时慢车应该往甲地行驶了1.5小时,此时慢车往甲地行驶了=120千米,所以此时慢车距离乙地为500+120=620千米,
    即快车到达甲地时,慢车距乙地620千米.
    故答案为:620.
    本题主要考查的是一次函数的应用,根据图象得出相应的信息是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)C(3,0),直线BC的解析式为y=﹣x+4;(2)满足条件的点G坐标为(0,)或(0,﹣1);(3)存在,满足条件的点D的坐标为(,0)或(﹣,0)或(﹣,0)
    【解析】
    (1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题.
    (2)分两种情形:①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.求出.②当时,如图中,同法可得,利用待定系数法即可解决问题.
    (3)利用三角形的面积公式求出点的坐标,求出直线的解析式,作交直线于,此时,,当时,可得四边形,四边形是平行四边形,可得,,,,再根据对称性可得解决问题.
    【详解】
    解:(1)直线与轴交于点,与轴交于点,
    ,,
    ,,




    设直线的解析式为,则有,

    直线的解析式为.
    (2),,,
    ,设,
    ①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.
    四边形是正方形,易证,
    ,,

    点在直线上,



    ②当时,如图中,同法可得,
    点在直线上,



    综上所述,满足条件的点坐标为或.
    (3)如图3中,设,




    ,,
    直线的解析式为,
    作交直线于,此时,,
    当时,可得四边形,四边形是平行四边形,可得,,,,
    根据对称性可得点关于点的对称点,也符合条件,
    综上所述,满足条件的点的坐标为,或,或,.
    本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    15、 (1)A、B两类图书的标价分别是27元、18元;(2)当书店进A类600本,B类200本时,书店获最大利润.
    【解析】
    (1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
    (2)先设购进A类图书m本,总利润为w元,则购进B类图书为(800-m)本,根据题目中所给的信息列出不等式组,求出m的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
    【详解】
    解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,则可列方程
    解得:x=18
    经检验:x=18是原分式方程的解
    则A、B两类图书的标价分别是27元、18元
    (2)设A类进货m本,则B类进货(800-m)本,利润为W元.
    由题知:
    解得:.
    W=(27-a-18)m+(18-12)(800-m)=(3-a)m+4800


    ∴W随m的增大而增大
    ∴当m=600时,W取最大值
    则当书店进A类600本,B类200本时,书店获最大利润
    本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
    16、(1);(2)在的中点处,见解析;(3)点到距离是.
    【解析】
    (1)根据平行线的性质得到,根据角平分线的定义得到,,于是得到,即可得到结论;
    (2)根据平行线的性质得到,等量代换得到,得到根据等腰三角形的性质即可得到结论;
    (3)根据(1)(2)可得,再设点到的距离是,建立等式,即可得到.
    【详解】
    解:(1),
    理由:

    分别平分



    (2)在的中点处,
    理由:







    在的中点处;
    (3)由(1)(2)得,
    在中,,
    设点到的距离是,则有

    .
    本题考查了平行四边形的性质,角平分线的定义,等腰三角形的性质,正确识别图形是解题的关键.
    17、见解析
    【解析】
    根据平行四边形的性质证出∠ADC=∠FCD,然后再证明△ADG≌△FCG可得AD=FC,根据一组对边平行且相等的四边形是平行四边形可得结论;
    【详解】
    证明:∵在▱ABCD中,AD∥BF.
    ∴∠ADC=∠FCD.
    ∵G为CD的中点,
    ∴DG=CG.
    在△ADG和△FCG中,

    ∴△ADG≌△FCG(ASA)
    ∴AD=FC.
    又∵AD∥FC,
    ∴四边形ACFD是平行四边形.
    此题主要考查了平行四边形的判定和性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
    18、24.
    【解析】
    直接利用二次根式乘除运算法则计算得出答案.
    【详解】
    解:原式=4÷×3
    =8×3
    =24.
    此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    首先根据求出外角度数,再利用外角和定理求出边数.
    【详解】
    正多边形的一个内角等于,
    它的外角是:,
    它的边数是:.
    故答案为:1.
    此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.
    20、
    【解析】
    根据反比例函数图象上点的坐标特征解答即可;
    【详解】
    解:∵反比例函数图象在第二,第四象限时,y随x的增大而增大,
    ∵点A(,)在反比例函数图象上,<0,
    ∴>0,
    ∵B(,)、C(,)在反比例函数图象上,0<<,
    ∴,
    ∴,
    故答案为:.
    本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.
    21、
    【解析】
    根据反比例函数的增减性解答即可.
    【详解】
    将A(7,y1),B(5,y2)分别代入双曲线上,得y1=;y2=,则y1与y2的大小关系是.
    故答案为.
    此题考查反比例函数的性质,解题关键在于掌握其性质.
    22、105°
    【解析】
    由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.
    【详解】
    ∵AD∥BC,
    ∴∠ADB=∠DBG,
    由折叠可得∠ADB=∠BDG,
    ∴∠DBG=∠BDG,
    又∵∠1=∠BDG+∠DBG=50°,
    ∴∠ADB=∠BDG=25°,
    又∵∠2=50°,
    ∴△ABD中,∠A=105°,
    ∴∠A′=∠A=105°,
    故答案为:105°.
    本题主要考查了翻折变换(折叠问题),平行四边形的性质,熟练掌握折叠性质和平行四边形额性质是解答本题的关键.
    23、
    【解析】
    根据方程的系数结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论,
    【详解】
    解:∵方程(k为常数)的两个不相等的实数根,
    ∴>0,且,
    解得:k<1,
    故答案为:.
    本题主要考查了根的判别式,掌握根的判别式是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)⊙O 的直径EC= 1.
    【解析】
    (1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
    (2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.
    【详解】
    证明:(1)连接AO,
    ∵AB=AC,∠BAC=120°,
    ∴∠B=∠ACB=10°,
    ∵AO=CO,
    ∴∠0AC=∠OCA=10°,
    ∴∠BAO=120°-10°=90°,
    ∵OA 是半径
    ∴AB 是⊙O 的切线;
    (2)解:连接OP,
    ∵PF⊥BC,∴∠FGC=∠EGP=90°,
    ∵CF=2,∠FCG=10°,∴FG=1,
    ∴在Rt△FGC 中CG=
    ∵CP=1.∴Rt△GPC 中,PG=
    设OG=x,则OC=x+,连接OP,,显然OP=OC=x+
    在 Rt△OPG 中,由勾股定理知
    即(x+)2=x2+()2∴x .
    ∴⊙O 的直径EC=EG+CG=2x++=1.
    故答案为:(1)见解析;(2)⊙O 的直径EC= 1.
    本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.
    25、(1)今年A款手机每部售价1600元;(2)当新进A款手机30部,B款手机60部时,这批手机获利最大.
    【解析】
    (1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,根据今年与去年卖出的数量相同列方程进行求解即可;
    (2)设今年新进A款手机a部,则B款手机(90-a)部,获利y元,根据利润=售价-进价可得y与a的函数关系式,求得a的取值范围,再根据函数的性质即可求得最大值,进而确定出如何进货才能获得最多.
    【详解】
    (1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,
    由题意,得,
    解得:x=1600,
    经检验,x=1600是原方程的根,
    答:今年A款手机每部售价1600元;
    (2)设今年新进A款手机a部,则B款手机(90-a)部,获利y元,
    由题意,得y=(1600-1100)a+(2000-1400)(90-a)=-100a+54000,
    ∵B款手机的进货数量不超过A款手机数量的两倍,
    ∴90-2a≤2a,
    ∴a≥30,
    ∵y=-100a+54000,
    -100<0,
    ∴y随着a的增大而减小,
    ∴a=30时,y有最大值,此时y=51000,
    ∴B款手机的数量为:90-30=60部,
    答:当新进A款手机30部,B款手机60部时,这批手机获利最大.
    本题考查了分式方程的应用,一次函数的应用,弄清题意,找准各量间的关系,正确列出分式方程以及函数解析式并灵活运用函数的性质是解题的关键.
    26、 (1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.
    【解析】
    (1)设购买A型号足球x个,B型号足球y个,根据总价=单价×数量,结合22000元购买A,B两种型号足球共100个,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购进A型号足球的数量不多于B型号足球数量的9倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质即可解决最值问题.
    【详解】
    解:(1) 设购买A型号足球x个,B型号足球y个,依题意,得
    解之得
    答:该校购买A型号足球60个,B型号足球40个;
    (2) 设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,
    根据题意得w=200m+250(100-m)
    =-50m+25000
    又∵m≤9(100-m);
    ∴0∵K=-50<0
    ∴w随m的増大而減小
    ∴当m=90肘w最小
    ∴最省钱的购买方案为:A型足球90个,B型足球10个.
    故答案为:(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.
    本题考查二元一次方程组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量之间的关系,找出w关于m的函数关系式.
    题号





    总分
    得分
    A款手机
    B款手机
    进货价格(元)
    1100
    1400
    销售价格(元)
    今年的销售价格
    2000
    相关试卷

    2025届广东省广州市华南师大附中九上数学开学联考模拟试题【含答案】: 这是一份2025届广东省广州市华南师大附中九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广东省广州市越秀区知用中学九上数学开学质量检测模拟试题【含答案】: 这是一份2024年广东省广州市越秀区知用中学九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广东省广州市广州大附属中学九上数学开学检测模拟试题【含答案】: 这是一份2024年广东省广州市广州大附属中学九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map